Skip to main content
Log in

Activity-dependent scaling of GABAergic excitation by dynamic Cl changes in Cajal–Retzius cells

  • Neuroscience
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

To unravel the functional implications of activity-dependent Cl changes during early stages of neuronal development, we determined which changes in the GABA reversal potential (E GABA) and GABAergic rheobase shifts were induced by episodes of GABAA receptor activation using gramicidin-perforated patch-clamp recordings from Cajal–Retzius cells in tangential cortical slices of newborn mice. Under this condition, focal application of the GABAA agonist muscimol (10 μM) depolarized the membrane by 15 ± 0.8 mV (n = 35). Such subthreshold GABAergic depolarizations considerably reduced the rheobase, corresponding to an excitatory action. After repetitive focal muscimol applications (50 pulses at 0.5 Hz) a significant reduction of E GABA and an attenuation of the excitatory GABAergic rheobase shift were observed, while the GABAergic membrane conductance and the absolute value of the rheobase were unaltered after the muscimol pulses. Bath application of 100 μM carbachol induced bursts of spontaneous GABAergic postsynaptic potentials. Both, E GABA and the excitatory GABAergic rheobase shift was significantly reduced after such barrage of carbachol-induced GABAergic postsynaptic potentials, while neither the GABAergic membrane conductance nor the absolute value of the rheobase was affected under this condition. Both results indicate that GABAergic activity itself can limit the excitatory effects of GABAA receptor activation, which supports the hypothesis that the low capacity of the Cl homeostasis in immature neurons could be a substrate for synaptic scaling and homeostatic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J, Fukuda A et al (2007) Kinetic properties of Cl uptake mediated by Na+-dependent K+-2Cl cotransport in immature rat neocortical neurons. J Neurosci 27:8616–8627

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284

    Article  PubMed  CAS  Google Scholar 

  3. Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519

    Article  PubMed  CAS  Google Scholar 

  4. Chub N, Mentis GZ, O’Donovan MJ (2006) Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity. J Neurophysiol 95:323–330

    Article  PubMed  CAS  Google Scholar 

  5. Chub N, O’Donovan MJ (2001) Post-episode depression of GABAergic transmission in spinal neurons of the chick embryo. J Neurophysiol 85:2166–2176

    PubMed  CAS  Google Scholar 

  6. de Tassigny AD, Souktani R, Ghaleh B, Henry P, Berdeaux A (2003) Structure and pharmacology of swelling-sensitive chloride channels, I-Cl, I-swell. Fundam Clin Pharmacol 17:539–553

    Article  Google Scholar 

  7. Defazio RA, Hablitz JJ (2001) Chloride accumulation and depletion during GABAA receptor activation in neocortex. Neuroreport 12:2537–2541

    Article  PubMed  CAS  Google Scholar 

  8. Dupont E, Hanganu IL, Kilb W, Hirsch S, Luhmann HJ (2006) Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439:79–83

    Article  PubMed  CAS  Google Scholar 

  9. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59–87

    Article  PubMed  CAS  Google Scholar 

  10. Foehring RC, van Brederode JF, Kinney GA, Spain WJ (2002) Serotonergic modulation of supragranular neurons in rat sensorimotor cortex. J Neurosci 22:8238–8250

    PubMed  CAS  Google Scholar 

  11. Hanganu IL, Ben Ari Y, Khazipov R (2006) Retinal waves trigger spindle bursts in the neonatal rat visual cortex. J Neurosci 26:6728–6736

    Article  PubMed  CAS  Google Scholar 

  12. Hanganu IL, Okabe A, Lessmann V, Luhmann HJ (2009) Cellular mechanisms of subplate-driven and cholinergic input-dependent network activity in the neonatal rat somatosensory cortex. Cereb Cortex 19:89–105

    Article  PubMed  Google Scholar 

  13. Hartmann K, Bruehl C, Golovko T, Draguhn A (2008) Fast homeostatic plasticity of inhibition via activity-dependent vesicular filling. PLoS ONE 3:e2979

    Article  PubMed  Google Scholar 

  14. Hubner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ (2001) Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron 30:515–524

    Article  PubMed  CAS  Google Scholar 

  15. Janusonis S, Gluncic V, Rakic P (2004) Early serotonergic projections to Cajal–Retzius cells: relevance for cortical development. J Neurosci 24:1652–1659

    Article  PubMed  CAS  Google Scholar 

  16. Jean-Xavier C, Mentis GZ, O’Donovan MJ, Cattaert D, Vinay L (2007) Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord. Proc Natl Acad Sci USA 104:11477–11482

    Article  PubMed  CAS  Google Scholar 

  17. Kaila K, Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature 330:163–165

    Article  PubMed  CAS  Google Scholar 

  18. Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben-Ari Y, Buzsáki G (2004) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432:758–761

    Article  PubMed  CAS  Google Scholar 

  19. Kilb W, Ikeda M, Uchida K, Okabe A, Fukuda A, Luhmann HJ (2002) Depolarizing glycine responses in Cajal–Retzius cells of neonatal rat cerebral cortex. Neuroscience 112:299–307

    Article  PubMed  CAS  Google Scholar 

  20. Kilb W, Luhmann HJ (2001) Spontaneous GABAergic postsynaptic currents in Cajal–Retzius cells in neonatal rat cerebral cortex. Eur J Neurosci 13:1387–1390

    Article  PubMed  CAS  Google Scholar 

  21. Kilb W, Luhmann HJ (2003) Carbachol-induced network oscillations in the intact cerebral cortex of the newborn rat. Cereb Cortex 13:409–421

    Article  PubMed  Google Scholar 

  22. Kirmse K, Dvorzhak A, Henneberger C, Grantyn R, Kirischuk S (2007) Cajal Retzius cells in the mouse neocortex receive two types of pre- and postsynaptically distinct GABAergic inputs. J Physiol Lond 585:881–895

    Article  PubMed  CAS  Google Scholar 

  23. Lamsa K, Palva JM, Ruusuvuori E, Kaila K, Taira T (2000) Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0–P2) rat hippocampus. J Neurophysiol 83:359–366

    PubMed  CAS  Google Scholar 

  24. Lee H, Chen CX, Liu YJ, Aizenman E, Kandler K (2005) KCC2 expression in immature rat cortical neurons is sufficient to switch the polarity of GABA responses. Eur J Neurosci 21:2593–2599

    Article  PubMed  Google Scholar 

  25. Mienville JM (1998) Persistent depolarizing action of GABA in rat Cajal–Retzius cells. J Physiol Lond 512:809–817

    Article  PubMed  CAS  Google Scholar 

  26. Pozas E, Paco S, Soriano E, Aguado F (2008) Cajal–Retzius cells fail to trigger the developmental expression of the Cl(−) extruding co-transporter KCC2. Brain Res 1239:85–91

    Article  PubMed  CAS  Google Scholar 

  27. Radnikow G, Feldmeyer D, Lubke J (2002) Axonal projection, input and output synapses, and synaptic physiology of Cajal–Retzius cells in the developing rat neocortex. J Neurosci 22:6908–6919

    PubMed  CAS  Google Scholar 

  28. Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes GL et al (2008) Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol 100:609–619

    Article  PubMed  Google Scholar 

  29. Richter D, Luhmann HJ, Kilb W (2010) Intrinsic activation of GABA(A) receptors suppresses epileptiform activity in the cerebral cortex of immature mice. Epilepsia 51:1483–1492

    Article  PubMed  CAS  Google Scholar 

  30. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K et al (1999) The K+/Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    Article  PubMed  CAS  Google Scholar 

  31. Russell JM (2000) Sodium-potassium-chloride cotransport. Physiol Rev 80:211–276

    PubMed  CAS  Google Scholar 

  32. Sava BA, David CS, Teissier A, Pierani A, Staiger JF, Luhmann HJ et al (2010) Electrophysiological and morphological properties of Cajal–Retzius cells with different ontogenetic origins. Neuroscience 167:724–734

    Article  PubMed  CAS  Google Scholar 

  33. Schwartz TH, Rabinowitz D, Unni V, Kumar VS, Smetters DK, Tsiola A et al (1998) Networks of coactive neurons in developing layer 1. Neuron 20:541–552

    Article  PubMed  CAS  Google Scholar 

  34. Sipila ST, Huttu K, Soltesz I, Voipio J, Kaila K (2005) Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 25:5280–5289

    Article  PubMed  Google Scholar 

  35. Soda T, Nakashima R, Watanabe D, Nakajima K, Pastan I, Nakanishi S (2003) Segregation and coactivation of developing neocortical layer 1 neurons. J Neurosci 23:6272–6279

    PubMed  CAS  Google Scholar 

  36. Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269:977–981

    Article  PubMed  CAS  Google Scholar 

  37. Stein V, Nicoll RA (2003) GABA generates excitement. Neuron 37:375–378

    Article  PubMed  CAS  Google Scholar 

  38. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340

    Article  PubMed  CAS  Google Scholar 

  39. Vinay L, Jean-Xavier C (2008) Plasticity of spinal cord locomotor networks and contribution of cation-chloride cotransporters. Brain Res Rev 57:103–110

    Article  PubMed  CAS  Google Scholar 

  40. Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587:1873–1879

    Article  PubMed  CAS  Google Scholar 

  41. Yamada J, Okabe A, Toyoda H, Kilb W, Luhmann HJ, Fukuda A (2004) Cl uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1. J Physiol 557:829–841

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft to WK (DFG Ki 835/2). The authors thank B. Krumm for excellent technical work and K. Achilles for her contribution to some experiments. All authors declare that they have no conflicts of interest and state that all experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kilb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolbaev, S.N., Luhmann, H.J. & Kilb, W. Activity-dependent scaling of GABAergic excitation by dynamic Cl changes in Cajal–Retzius cells. Pflugers Arch - Eur J Physiol 461, 557–565 (2011). https://doi.org/10.1007/s00424-011-0935-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0935-4

Keywords

Navigation