Skip to main content
Log in

Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways

  • Signaling and Cell Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Controversy exists on whether uncoupling protein 3 (UCP3) positively or negatively influences insulin sensitivity in vivo, and the underlying signaling pathways have been scarcely studied. We studied how a progressive reduction in UCP3 expression (using UCP3 +/+, UCP3 +/−, and UCP3 −/− mice) modulates insulin sensitivity and related metabolic parameters. In order to further validate our observations, we also studied animals in which insulin resistance was induced by administration of a high-fat diet (HFD). In UCP3 +/− and UCP3 −/− mice, gastrocnemius muscle Akt/protein kinase B (Akt/PKB) (serine 473) and AMP-activated protein kinase (AMPK) (threonine 171) phosphorylation, and glucose transporter 4 (GLUT4) membrane levels were reduced compared to UCP3 +/+ mice. The HOMA-IR index (insulin resistance parameter) was increased both in the UCP3 +/− and UCP3 −/− mice. In these mice, insulin administration normalized Akt/PKB phosphorylation between genotypes while AMPK phosphorylation was further reduced, and sarcolemmal GLUT4 levels were induced but did not reach control levels. Furthermore, non-insulin-stimulated muscle fatty acid oxidation and the expression of several involved genes both in muscle and in liver were reduced. HFD administration induced insulin resistance in UCP3 +/+ mice and the aforementioned parameters resulted similar to those of chow-fed UCP3 +/− and UCP3 −/− mice. In conclusion, high-fat-diet-induced insulin resistance in wild-type mice mimics that of chow-fed UCP3 +/− and UCP3 −/− mice showing that progressive reduction of UCP3 levels results in insulin resistance. This is accompanied by decreased fatty acid oxidation and a less intense Akt/PKB and AMPK signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB (1997) UCP-3, an uncoupling protein homolog expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun 235:79–82

    Article  CAS  PubMed  Google Scholar 

  2. Lowell BB, Susulic VS, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS (1993) Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366:740–742

    Article  CAS  PubMed  Google Scholar 

  3. Silvestri E, Moreno M, Lombardi A, Ragni M, de Lange P, Alexson SE, Lanni A, Goglia F (2005) Thyroid hormone effects on putative biochemical pathways involved in UCP3 activation in rat skeletal muscle mitochondria. FEBS Lett 579:1639–1645

    Article  CAS  PubMed  Google Scholar 

  4. Gong DW, He Y, Karas M, Reitman M (1997) Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem 272:24129–24132

    Article  CAS  PubMed  Google Scholar 

  5. Lanni A, Beneduce L, Lombardi A, Moreno M, Boss O, Muzzin P, Giacobino JP, Goglia F (1999) Expression of uncoupling protein-3 and mitochondrial activity in the transition from hypothyroid to hyperthyroid state in rat skeletal muscle. FEBS Lett 444:250–254

    Article  CAS  PubMed  Google Scholar 

  6. De Lange P, Lanni A, Beneduce L, Moreno M, Lombardi A, Silvestri E, Goglia F (2001) Uncoupling protein-3 is a molecular determinant for the regulation of resting metabolic rate by thyroid hormone. Endocrinology 142:3414–3420

    Article  PubMed  Google Scholar 

  7. Cusin I, Zakrzewska KE, Boss O, Muzzin P, Giacobino JP, Ricquier D, Jeanrenaud B, Rohner-Jeanrenaud F (1998) Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins. Diabetes 47:1014–1019

    Article  CAS  PubMed  Google Scholar 

  8. Simonyan RA, Jimenez M, Ceddia RB, Giacobino JP, Muzzin P, Skulachev VP (2001) Cold-induced changes in the energy coupling and the UCP3 level in rodent skeletal muscles. Biochim Biophys Acta 1505:271–279

    Article  CAS  PubMed  Google Scholar 

  9. Cadenas S, Echtay KS, Harper JA, Jekabsons MB, Buckingham JA, Grau E, Abuin A, Chapman H, Clapham JC, Brand MD (2002) The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3. J Biol Chem 277:2773–2778

    Article  CAS  PubMed  Google Scholar 

  10. De Lange P, Ragni M, Silvestri E, Moreno M, Schiavo L, Lombardi A, Farina P, Feola A, Goglia F, Lanni A (2004) Combined cDNA/RT–PCR analysis of gene expression profile in rat gastrocnemius muscle: relation to its adaptative function in energy metabolism during fasting. FASEB J 18:350–352

    PubMed  Google Scholar 

  11. De Lange P, Farina P, Moreno M, Ragni M, Lombardi A, Silvestri E, Burrone L, Lanni A, Goglia F (2006) Sequential changes in the signal transduction responses of skeletal muscle following food deprivation. FASEB J 20:2579–2581

    Article  PubMed  Google Scholar 

  12. Cadenas S, Buckingham JA, Samec S, Seydoux J, Din N, Dulloo AG, Brand MD (1999) UCP2 and UCP3 rise in starved rat skeletal muscle but mitochondrial proton conductance is unchanged. FEBS Lett 462:257–260

    Article  CAS  PubMed  Google Scholar 

  13. Hesselink MK, Greenha PL, Constantin-Teodosiu D, Hultman E, Saris WH, Nieuwlaat R, Schaart G, Kornips E, Schrauwen P (2003) Increased uncoupling protein-3 content does not affect mitochondrial function in human skeletal muscle in vivo. J Clin Invest 111:479–486

    CAS  PubMed  Google Scholar 

  14. Goglia F, Skulachev VP (2003) A function for novel uncoupling proteins: antioxidant defense of mitochondrial matrix by translocating fatty acid peroxides from the inner to the outer membrane leaflet. FASEB J 17:1585–1591

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi A, Busiello RA, Napolitano L, Cioffi F, Moreno M, de Lange P, Silvestri E, Lanni A, Goglia F (2010) Uncoupling protein-3 (UCP3) translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupling. J Biol Chem 285:16599–16605

    Article  CAS  PubMed  Google Scholar 

  16. Seifert EL, Bezaire V, Estay C, Harper ME (2008) Essential role for uncoupling protein-3 in mitochondrial adaptation to fasting but not in fatty acid oxidation or fatty acid anion export. J Biol Chem 283:25134–25131

    Google Scholar 

  17. Bezaire V, Seifert EL, Harper ME (2007) Uncoupling protein-3: clues in an ongoing mitochondrial mystery. FASEB J 21:312–324

    Article  CAS  PubMed  Google Scholar 

  18. Samec S, Seydoux J, Dulloo AG (1998) Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J 12:715–724

    CAS  PubMed  Google Scholar 

  19. Samec S, Seydoux J, Dulloo AG (2000) Downregulation of skeletal muscle UCP-3 gene expression during refeeding is prevented by cold exposure. Pflugers Arch 439:723–729

    Article  CAS  PubMed  Google Scholar 

  20. De Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A (2007) Fuel economy in food-deprived skeletal muscle: signalling pathways and regulatory mechanisms [review]. FASEB J 21:3431–3441

    Article  PubMed  Google Scholar 

  21. Choi CS, Fillmore JJ, Kim JK, Liu ZK, Kim S, Collier EF, Kulkarni A, Distefano A, Hwang YJ, Kahn M, Chen Y, Yu C, Moore IK, Reznick RM, Higashimori T, Shulman GI (2007) Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest 117:1995–2003

    Article  CAS  PubMed  Google Scholar 

  22. Clapham JC, Arch JR, Chapman H, Haynes A, Lister C, Moore GB, Piercy V, Carter SA, Lehner I, Smith SA, Beeley LJ, Godden RJ, Herrity N, Skehel M, Changani KK, Hockings PD, Reid DG, Squires SM, Hatcher J, Trail B, Latcham J, Rastan S, Harper AJ, Cadenas S, Buckingham JA, Brand MD, Abuin A (2000) Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406:415–418

    Article  CAS  PubMed  Google Scholar 

  23. Huppertz C, Fischer BM, Kim YB, Kotani K, Vidal-Puig A, Slieker LJ, Sloop KW, Lowell BB, Kahn BB (2001) Uncoupling protein 3 (UCP3) stimulates glucose uptake in muscle cells through a phosphoinositide 3-kinase-dependent mechanism. J Biol Chem 276:12520–12529

    Article  CAS  PubMed  Google Scholar 

  24. Costford SR, Chaudhry SN, Salkhordeh M, Harper ME (2006) Effects of the presence, absence, and overexpression of uncoupling protein-3 on adiposity and fuel metabolism in congenic mice. Am J Physiol Endocrinol Metab 290:E1304–E1312

    Article  CAS  PubMed  Google Scholar 

  25. Costford SR, Chaudry SN, Crawford SA, Salkhordeh M, Harper ME (2008) Long-term high-fat feeding induces greater fat storage in mice lacking UCP3. Am J Physiol Endocrinol Metab 295:E1018–E1021

    Article  CAS  PubMed  Google Scholar 

  26. Schrauwen P, Hesselink MKC, Blaak EE, Borghouts LB, Schaart G, Saris WHM, Keizer HA (2001) Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 50:2870–2873

    Article  CAS  PubMed  Google Scholar 

  27. Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW, Garvey WT (2009) Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid (beta) oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr 139:1073–1081

    Article  CAS  PubMed  Google Scholar 

  28. Jia J-J, Zhang X, Ge CR, Jois M (2009) The polymorphisms of UCP2 and UCP3 genes associated with fat metabolism, obesity and diabetes. Obes Rev 10:519–526

    Article  CAS  PubMed  Google Scholar 

  29. Gong DW, Monemdjou S, Gavrilova O, Leon LR, Marcus-Samuels B, Chou CJ, Everett C, Kozak LP, Li C, Deng C, Harper ME, Reitman ML (2000) Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem 275:16251–16257

    Article  CAS  PubMed  Google Scholar 

  30. Tiraby C, Tavernier G, Capel F, Mairal A, Crampes F, Rami J, Pujol C, Boutin LD (2007) Resistance to high-fat-diet-induced obesity and sexual dimorphism in the metabolic responses of transgenic mice with moderate uncoupling protein 3 overexpression in glycolytic skeletal muscles. Diabetologia 50:2190–2199

    Article  CAS  PubMed  Google Scholar 

  31. Kerner J, Turkaly PJ, Minkler PE, Hoppel CL (2001) Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content. Am J Physiol Metab 281:E1054–E1062

    CAS  Google Scholar 

  32. Alexson SEH, Nedergaard J (1988) A novel type of short- and medium-chain acyl-CoA hydrolases in brown adipose tissue mitochondria. J Biol Chem 263:13564–13571

    CAS  PubMed  Google Scholar 

  33. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, Lowell BB (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266

    Article  CAS  PubMed  Google Scholar 

  34. Camps M, Castello A, Munoz P, Monfar M, Testar X, Palacin M, Zorzano A (1992) Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose transporter expression in insulin-sensitive tissues. Biochem J 282:765–772

    CAS  PubMed  Google Scholar 

  35. Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86:205–243

    Article  CAS  PubMed  Google Scholar 

  36. De Lange P, Senese R, Cioffi F, Moreno M, Lombardi A, Silvestri E, Goglia F, Lanni A (2008) Rapid activation by 3, 5, 3′-L-triiodothyronine of AMPK/ACC and Akt/PKB signaling pathways: relation to changes in fuel metabolism and myosin heavy chain protein content in rat gastrocnemius muscle in vivo. Endocrinology 149:6462–6470

    Article  PubMed  Google Scholar 

  37. Criscuolo F, Mozo J, Hurtaud C, Nubel T, Bouillaud F (2006) UCP2, UCP3, avUCP, what do they do when proton transport is not stimulated? Possible relevance to pyruvate and glutamine metabolism. Biochim Biophys Acta 175:1284–1291

    Google Scholar 

  38. Isumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton J, Ouchi N, LeBrasseur NK, Walsh K (2008) Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 7:159–172

    Article  Google Scholar 

  39. Sanderson LM, Boekschoten MV, Desvergne B, Muller M, Kersten S (2009) Transcriptional profiling reveals divergent roles of PPAR alpha and PPAR beta/delta in regulation of gene expression in mouse liver. Physiol Genomics 41:42–52

    PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by a Grant from Ministero dell’Istruzione dell’Università, e della Ricerca COFIN—Protocol Number 20089SRS2X.

Ethical standards

The experiments comply with the current Italian laws.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonia Lanni or Pieter de Lange.

Additional information

Rosalba Senese and Vivien Valli contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senese, R., Valli, V., Moreno, M. et al. Uncoupling protein 3 expression levels influence insulin sensitivity, fatty acid oxidation, and related signaling pathways. Pflugers Arch - Eur J Physiol 461, 153–164 (2011). https://doi.org/10.1007/s00424-010-0892-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0892-3

Keywords

Navigation