Skip to main content
Log in

In airways ATP refills sarcoplasmic reticulum via P2X smooth muscle receptors and induces contraction through P2Y epithelial receptors

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

In airway smooth muscle (ASM), ATP induces a contraction associated with the increase of [Ca2+]i. Cytosolic Ca2+ is extruded to the extracellular space by the Na+/Ca2+ exchanger (NCX) in its normal mode. Some agonists activate the reverse mode of the NCX (NCXREV), inducing Ca2+ entry. We investigated whether ATP, via P2X receptors, activates the NCXREV and whether the increment in [Ca2+]i is used for contraction or for the sarcoplasmic reticulum (SR) refilling in guinea pig ASM. ATP contracted the ASM and this effect was blocked by indomethacin. Suramin and RB2 diminished the contraction induced by ATP; PPADS did not modify this response. In myocytes, ATP produces an increase in [Ca2+]i not modified by indomethacin. In tracheal strips, using simultaneous measurements, ATP induced a biphasic change in [Ca2+]i, (a Ca2+ peak followed by a plateau) accompanied by a contraction. Indomethacin or epithelium removal abolished this contraction, but not the Ca2+ peak, whereas the plateau was decreased by indomethacin. In myocytes, the ATP-induced [Ca2+]i increment was inhibited by suramin (~96%), PPADS (~40%), and RB2 (~57%). ATP augmented the NCXREV and this effect was abolished by SKF 96365 and TNP-ATP (P2X1 and P2X3 receptors antagonist). P2X1 and P2X3 receptors were corroborated by immunoblotting of ASM. NCXREV activation and ATP in the presence of RB2 favor the SR Ca2+ refilling. In tracheal rings, successive ATP stimulations were reduced with KB-R7943. Therefore, ATP: (1) indirectly promotes muscle contraction via epithelial P2Y receptors and prostaglandins release; (2) increases the [Ca2+]i through a prostaglandin-independent manner by activating P2X and P2Y receptors in smooth muscle; and (3) activates P2X1 and P2X3 receptors and the NCXREV which refills the SR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Advenier C, Bidet D, Floch-Saint-Aubin A, Renier A (1982) Contribution of prostaglandins and thromboxanes to the adenosine and ATP-induced contraction of guinea-pig isolated trachea. Br J Pharmacol 77:39–44

    CAS  PubMed  Google Scholar 

  2. Barajas-López C, Espinosa-Luna R, Christofi FL (2000) Changes in intracellular Ca2+ by activation of P2 receptors in submucosal neurons in short-term cultures. Eur J Pharmacol 409:243–257

    Article  PubMed  Google Scholar 

  3. Bazan-Perkins B, Flores-Soto E, Barajas-Lopez C, Montaño LM (2003) Role of sarcoplasmic reticulum Ca2+ content in Ca2+ entry of bovine airway smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 368:277–283

    Article  CAS  PubMed  Google Scholar 

  4. Bergner A, Sanderson MJ (2002) ATP stimulates Ca2+ oscillations and contraction in airway smooth muscle cells of mouse lung slices. Am J Physiol Lung Cell Mol Physiol 283:L1271–L1279

    CAS  PubMed  Google Scholar 

  5. Birinyi P, Acsai K, Bányász T, Tóth A, Horváth B, Virág L, Szentandrássy N, Magyar J, Varró A, Fülöp F, Nánási PP (2005) Effects of SEA0400 and KB-R7943 on Na+/Ca2+ exchange current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol 372:63–70

    Article  CAS  PubMed  Google Scholar 

  6. Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    CAS  PubMed  Google Scholar 

  7. Burnstock G (2006) Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci 27:166–176

    Article  CAS  PubMed  Google Scholar 

  8. Burnstock G (2010) Purinergic cotransmission. Exp Physiol 94:20–24

    Article  Google Scholar 

  9. Butler SJ, Kelly EC, McKenzie FR, Guild SB, Wakelam MJ, Milligan G (1988) Differential effects of suramin on the coupling of receptors to individual species of pertussis toxin sensitive guanine nucleotide binding proteins. Biochem J 251:201–205

    CAS  PubMed  Google Scholar 

  10. Carbajal V, Vargas MH, Flores-Soto E, Martinez-Cordero E, Bazan-Perkins B, Montaño LM (2005) LTD4 induces hyperresponsiveness to histamine in bovine airway smooth muscle: role of SR-ATPase Ca2+ pump and tyrosine kinase. Am J Physiol Lung Cell Mol Physiol 288:84–92

    Article  Google Scholar 

  11. Cai F, Li PY, Yang Y, Liu ZF, Li ML, Zhou W, Pei J, Cheng J, Lan H, Grammer JB, Zeng XR (2007) Characteristic of spontaneous transient outward potassium currents in vascular smooth muscle cells of porcine coronary artery. Acta Physiologica Sinica 59:27–34

    CAS  PubMed  Google Scholar 

  12. Dai JM, Kuo KH, Leo JM, van Breemen C, Lee CH (2006) Mechanism of ACh-induced asynchronous calcium waves and tonic contraction in porcine tracheal muscle bundle. Am J Physiol Lung Cell Mol Physiol 290:L459–L469

    Article  CAS  PubMed  Google Scholar 

  13. Eisner DA, Lederer WJ (1985) Na–Ca exchange: stoichiometry and electrogenicity. Am J Physiol Cell Physiol 248:C189–C202

    CAS  Google Scholar 

  14. Farmer SG, Canning BJ, Wilkins DE (1988) Adenosine receptor-mediated contraction and relaxation of guinea-pig isolated tracheal smooth muscle: effects of adenosine antagonists. Br J Pharmacol 95:371–378

    CAS  PubMed  Google Scholar 

  15. Fedan JS, Belt JJ, Yuan LX, Frazer DG (1993) Contractile effects of nucleotides in guinea pig isolated, perfused trachea: involvement of respiratory epithelium, prostanoids and Na+ and Cl channels. J Pharmacol Exp Ther 264:210–216

    CAS  PubMed  Google Scholar 

  16. Fedan JS, Stem JL, Day B (1994) Contraction of the guinea pig isolated, perfused trachea to purine and pyrimidine agonists. J Pharmacol Exp Ther 268:1321–1327

    CAS  PubMed  Google Scholar 

  17. Govindaraju V, Martin JG, Maghni K, Ferraro P, Michoud MC (2005) The effects of extracellular purines and pyrimidines on human airway smooth muscle cells. J Pharmacol Exp Ther 315:941–948

    Article  CAS  PubMed  Google Scholar 

  18. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  19. Hirota S, Janssen LJ (2007) Store-refilling involves both L-type calcium channels and reverse-mode sodium–calcium exchange in airway smooth muscle. Eur Respir J 30:269–278

    Article  CAS  PubMed  Google Scholar 

  20. Hirota S, Pertens E, Janssen LJ (2007) The reverse mode of the Na+/Ca2+ exchanger provides a source of Ca2+ for store refilling following agonist-induced Ca2+ mobilization. Am J Physiol Lung Cell Mol Physiol 292:L438–L447

    Article  CAS  PubMed  Google Scholar 

  21. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC Jr, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13:913–919

    Article  CAS  PubMed  Google Scholar 

  22. Iwamoto T, Inoue Y, Ito K, Sakaue T, Kita S, Katsuragi T (2004) The exchanger inhibitory peptide region-dependent inhibition of Na+/Ca2+ exchange by SN-6 [2-[4-(4-nitrobenzyloxy)benzyl]thiazolidine-4-carboxylic acid ethyl ester], a novel benzyloxyphenyl derivative. Mol Pharmacol 66:45–55

    Article  CAS  PubMed  Google Scholar 

  23. Kajita J, Yamaguchi H (1993) Calcium mobilization by muscarinic cholinergic stimulation in bovine single airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 264:L496–L503

    CAS  Google Scholar 

  24. Kamikawa Y, Shimo Y (1976) Mediation of prostaglandin E2 in the biphasic response to ATP of the isolated tracheal muscle of guinea-pigs. J Pharm Pharmacol 28:294–297

    CAS  PubMed  Google Scholar 

  25. Mendoza-Fernandez V, Andrew RD, Barajas-López C (2000) ATP inhibits the synaptic release by acting at P2Y receptors in pyramidal neurons of hippocampal slices. J Pharmacol Exp Ther 293:172–179

    CAS  PubMed  Google Scholar 

  26. Michoud MC, Tao FC, Pradhan AA, Martin JG (1999) Mechanisms of the potentiation by adenosine of adenosine triphosphate-induced calcium release in tracheal smooth-muscle cells. Am J Respir Cell Mol Biol 21:30–36

    CAS  PubMed  Google Scholar 

  27. Mounkaïla B, Marthan R, Roux E (2005) Biphasic effect of extracellular ATP on human and rat airways is due to multiple P2 purinoceptor activation. Respir Res 6:143

    Article  PubMed  Google Scholar 

  28. Nagaoka M, Nara M, Tamada T, Kume H, Oguma T, Kikuchi T, Zaini J, Moriya T, Ichinose M, Tamura G, Hattori T (2009) Regulation of adenosine 5′-triphosphate (ATP)-gated P2X4 receptors on tracheal smooth muscle cells. Respir Physiol Neurobiol 166:61–67

    Article  CAS  PubMed  Google Scholar 

  29. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    CAS  PubMed  Google Scholar 

  30. Oguma T, Ito S, Kondo M, Makino Y, Shimokata K, Honjo H, Kamiya K, Kume H (2007) Roles of P2X receptors and Ca2+ sensitization in extracellular adenosine triphosphate-induced hyperresponsiveness in airway smooth muscle. Clin Exp Allergy 37:893–900

    Article  CAS  PubMed  Google Scholar 

  31. Ouardouz M, Zamponi GW, Barr W, Kiedrowski L, Stys PK (2005) Protection of ischemic rat spinal cord white matter: dual action of KB-R7943 on Na+/Ca2+ exchange and L-type Ca2+ channels. Neuropharmacology 48:566–575

    Article  CAS  PubMed  Google Scholar 

  32. Shapiro MS, Wollmuth LP, Hille B (1994) Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N-ethylmaleimide in rat sympathetic neurons. J Neurosci 14:7109–7116

    CAS  PubMed  Google Scholar 

  33. Smith MM, Harden TK (1984) Modification of receptor-mediated inhibition of adenylate cyclase in NG108-15 neuroblastoma X glioma cells by N-ethylmaleimide. J Pharmacol Exp Ther 228:425–433

    CAS  PubMed  Google Scholar 

  34. Takata Y, Nishimura Y, Maeda H, Yokoyama M (1999) Phospholipase A2 augments contraction and intracellular calcium mobilization through thromboxane A2 in bovine tracheal smooth muscle. Eur Respir J 14:396–404

    Article  CAS  PubMed  Google Scholar 

  35. Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973

    CAS  PubMed  Google Scholar 

  36. Watano T, Harada Y, Harada K, Nishimura N (1999) Effect of Na+/Ca2+ exchange inhibitor, KB-R7943 on ouabain-induced arrhythmias in guinea-pigs. Br J Pharmacol 127:1846–1850

    Article  CAS  PubMed  Google Scholar 

  37. Wu C, Sui G, Fry CH (2002) The role of the L-type Ca2+ channel in refilling functional intracellular Ca2+ stores in guinea-pig detrusor smooth muscle. J Physiol 538:357–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Posgrado en Ciencias Biomédicas, Facultad de Medicina, UNAM, and CONACYT for the scholarship to Edgar Flores during 10 months. This study was partly supported by a grant from CONACYT (81409 and 102013) and DGAPA-UNAM (IN201810-3) to Dr. Luis M. Montaño.

Disclosures

No conflicts of interest are declared by the author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. Montaño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores-Soto, E., Carbajal, V., Reyes-García, J. et al. In airways ATP refills sarcoplasmic reticulum via P2X smooth muscle receptors and induces contraction through P2Y epithelial receptors. Pflugers Arch - Eur J Physiol 461, 261–275 (2011). https://doi.org/10.1007/s00424-010-0886-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0886-1

Keywords

Navigation