Skip to main content
Log in

The endothelial saga: the past, the present, the future

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Endothelium-dependent changes in vasomotor tone, whether evoked by vasoactive agents or physical forces, are recognized as essential for the local hemodynamic control in various normal and pathological circumstances. They are based on a complex signaling network within the vascular wall. In recent years, substantial efforts have been made to analyze how such signals are generated and used in the endothelium-dependent control of vascular smooth muscle. The underlying mechanisms vary with species, age, sex, hormonal status, vascular bed studied, caliber of the blood vessels, triggering stimuli, pre-existing vascular tone, oxidative stress, and pathology. Such aspects and many others will be addressed specifically by the authors contributing to this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, Trebak M (2009) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103:1289–1299

    Article  Google Scholar 

  2. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, Kemp-Harper BK (2009) A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol 157:540–550

    Article  CAS  PubMed  Google Scholar 

  3. Balligand J-L, Feron O, Dessy C (2009) eNOS activation by physical forces: from short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 80:481–534

    Article  Google Scholar 

  4. Boittin FX, Gribi F, Serir K, Bény JL (2008) Ca2+-independent PLA2 controls endothelial store-operated Ca2+ entry and vascular tone in intact aorta. Am J Physiol Heart Circ Physiol 295:H2466–H2474

    Article  CAS  PubMed  Google Scholar 

  5. Brähler S, Kaistha A, Schmidt VJ, Wölfle SE, Busch C, Kaistha BP, Kacik M, Hasenau AL, Grgic I, Si H, Bond CT, Adelman JP, Wulff H, de Wit C, Hoyer J, Köhler R (2009) Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation 119:2323–2332

    Article  PubMed  Google Scholar 

  6. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Nat Acad Sci U S A 87:682–685

    Article  CAS  Google Scholar 

  7. Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM (2002) EDHF: Bringing the concepts together. Trends Pharmacol Sci 23:374–380

    Article  CAS  PubMed  Google Scholar 

  8. De Mey JG, Claeys M, Vanhoutte PM (1982) Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J Pharmacol Exp Ther 222:166–173

    PubMed  Google Scholar 

  9. De Mey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall: importance of the endothelium. Circ Res 51:439–447

    PubMed  Google Scholar 

  10. Ding H, Aljofan M, Triggle CR (2007) Oxidative stress and increased eNOS and NADPH oxidase expression in mouse microvessel endothelial cells. J Cell Physiol 212:682–689

    Article  CAS  PubMed  Google Scholar 

  11. Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102:1247–1255

    Article  CAS  PubMed  Google Scholar 

  12. Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE (2009) TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00241.2009

    PubMed  Google Scholar 

  13. Fasolato C, Nilius B (1998) Store depletion triggers the calcium release-activated calcium current (ICRAC) in macrovascular endothelial cells: a comparison with Jurkat and embryonic kidney cell lines. Pflügers Arch 436:69–74

    Article  CAS  PubMed  Google Scholar 

  14. Feletou M, Tang EH, Vanhoutte PM (2008) Nitric oxide the gatekeeper of endothelial vasomotor control. Front Biosci 13:4198–4217

    Article  CAS  PubMed  Google Scholar 

  15. Félétou M, Vanhoutte PM (2006) EDHF: where are we now? Arterioscler Thromb Vasc Biol 26:1215–1225

    Article  PubMed  Google Scholar 

  16. Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–R12

    CAS  PubMed  Google Scholar 

  17. Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2017

    CAS  PubMed  Google Scholar 

  18. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 299:373–376

    Article  Google Scholar 

  19. Furchgott RF (1988) Studies on relaxation of rabbit aorta by sodium nitrite: the basis for the proposal that acid-activable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide. In: Vanhoutte PM (ed) Vasodilatation: vascular smooth muscle peptides, autonomic nerves and endothelium. Raven, New York, pp 401–414

    Google Scholar 

  20. Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94:1408–1417

    Article  CAS  PubMed  Google Scholar 

  21. Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320:454–456

    Article  CAS  PubMed  Google Scholar 

  22. Harrington LS, Carrier MJ, Gallagher N, Gilroy D, Garland CJ, Mitchell JA (2007) Elucidation of the temporal relationship between endothelial-derived NO and EDHF in mesenteric vessels. Am J Physiol Heart Circ Physiol 293:H1682–H1688

    Article  CAS  PubMed  Google Scholar 

  23. Heistad DD, Wakisaka Y, Miller J, Chu Y, Pena-Silva R (2009) Novel aspects of oxidative stress in cardiovascular diseases. Circ J 73:201–207

    Article  CAS  PubMed  Google Scholar 

  24. Hibbs JB Jr, Taintor RR, Vavrin Z (1987) Macrophage cytotoxicity: role for l-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473–476

    Article  CAS  PubMed  Google Scholar 

  25. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    Article  CAS  PubMed  Google Scholar 

  26. Ignarro LJ (2008) Different pharmacological properties of two enantiomers in a unique β-blocker, nebivolol. Cardiovasc Ther 26:115–134

    Article  CAS  PubMed  Google Scholar 

  27. Ignarro LJ, Byrns RE, Wood KS (1988) Biochemical and pharmacological properties of endothelium- derived relaxing factor and its similarity to nitric oxide radical. In: Vanhoutte PM (ed) Vasodilatation: vascular smooth muscle peptides, autonomic nerves and endothelium. Raven, New York, pp 427–436

    Google Scholar 

  28. Ignarro LJ, Harbison RG, Wood KS, Kadowitz PJ (1986) Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther 237:893–900

    CAS  PubMed  Google Scholar 

  29. Jagnandan D, Sessa WC, Fulton D (2005) Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS. Am J Physiol Cell Physiol 289:C1024–C1033

    Article  CAS  PubMed  Google Scholar 

  30. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    Article  CAS  PubMed  Google Scholar 

  31. Konishi M, Su C (1983) Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension 5:881–886

    CAS  PubMed  Google Scholar 

  32. Ku DD (1982) Coronary vascular reactivity after acute myocardial infarction. Science 218:576–578

    Article  CAS  PubMed  Google Scholar 

  33. Lamas S, Lowenstein CJ, Michel T (2007) Nitric oxide signaling comes of age: 20 years and thriving. Cardiovasc Res 75:207–209

    Article  CAS  PubMed  Google Scholar 

  34. Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT (2008) Functional architecture of inositol 1, 4, 5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 105:9627–9632

    Article  CAS  PubMed  Google Scholar 

  35. Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I (2008) Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res 80:445–452

    Article  CAS  PubMed  Google Scholar 

  36. Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8:344–348

    PubMed  Google Scholar 

  37. Lüscher TF, Vanhoutte PM (1990) The endothelium: modulator of cardiovascular function. CRC, Boca Raton

    Google Scholar 

  38. Lundberg JO (2006) Nitric oxide metabolites and cardiovascular disease. Markers, mediators, or both? J Am Col Cardiol 47:580–581

    Article  Google Scholar 

  39. Marin E, Sessa WC (2007) Role of endothelial-derived nitric oxide in hypertension and renal diseases. Curr Opin Nephrol Hypertens 16:105–110

    Article  CAS  PubMed  Google Scholar 

  40. Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285:L1179–L1183

    CAS  PubMed  Google Scholar 

  41. Moncada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 30:293–331

    Google Scholar 

  42. Murad F, Mitta CK, Arnold WP, Katsuki S, Kimura H (1978) Guanylate cyclase: activation by azide, nitro-compounds, nitric oxide and hydroxyl radical an inhibition by haemoglobin and myoglobin. Adv Cycl Nucleotide Res 9:145–158

    CAS  Google Scholar 

  43. Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10:5–15

    Article  CAS  PubMed  Google Scholar 

  44. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    Article  CAS  PubMed  Google Scholar 

  45. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from l-arginine. Nature 333:664–666

    Article  CAS  PubMed  Google Scholar 

  46. Palmer RMJ, Moncada S (1989) A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun 158:348–352

    Article  CAS  PubMed  Google Scholar 

  47. Radomski MW, Palmer RMJ, Moncada S (1987) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148:1482–1489

    Article  CAS  PubMed  Google Scholar 

  48. Rees DD, Palmer RMJ, Hodson HF, Moncada S (1989) A specific inhibitor of nitric oxide formation from l-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol 96:418–424

    CAS  PubMed  Google Scholar 

  49. Rees DD, Palmer RMJ, Moncada S (1989) The role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86:3375–3378

    Article  CAS  PubMed  Google Scholar 

  50. Rubanyi GM, Lorenz RR, Vanhoutte PM (1985) Bioassay of endothelium-derived relaxing factor(s). Inactivation by catecholamines. Am J Physiol 249:H95–H101

    CAS  PubMed  Google Scholar 

  51. Rubanyi GM, Romero JC, Vanhoutte PM (1986) Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 250:H1145–H1149

    CAS  PubMed  Google Scholar 

  52. Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor(s). Am J Physiol 250:H822–H827

    CAS  PubMed  Google Scholar 

  53. Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand JL, Dessy C (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074

    Article  CAS  PubMed  Google Scholar 

  54. Sankaranarayanan A, Raman G, Busch C, Schultz T, Zimin PI, Hoyer J, Köhler R, Wulff H (2009) Naphtho[1, 2-d]thiazol-2-ylamine (SKA-31), a new activator of KCa2 and KCa3.1 potassium channels, potentiates the endothelium-derived hyperpolarizing factor response and lowers blood pressure. Mol Pharmacol 75:281–295

    Article  CAS  PubMed  Google Scholar 

  55. Scott-Burden T, Vanhoutte PM (1993) The endothelium as a regulator of vascular smooth muscle proliferation. Circulation 87:V51–V55

    Google Scholar 

  56. Segal SS (2005) Regulation of blood flow in the microcirculation. Microcirculation 12:33–45

    Article  PubMed  Google Scholar 

  57. Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM, Nakai J, Salama G, Segal SS, Kotlikoff MI (2007) Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice. Circ Res 101:1300–1309

    Article  CAS  PubMed  Google Scholar 

  58. Touyz RM (2004) Reactive oxygen species and angiotensin II signaling in vascular cells— implications in cardiovascular disease. Braz J Med Biol Res 37:1263–1273

    Article  CAS  PubMed  Google Scholar 

  59. Vanhoutte PM (1998) Endothelial dysfunction and inhibition of converting enzyme. Eur Heart J 19:J7–J15

    Article  CAS  PubMed  Google Scholar 

  60. Vanhoutte PM (2010) COX-1 and vascular disease. Clin Pharmacol Ther 86:212–219

    Google Scholar 

  61. Vanhoutte PM (2009) How we learned to say NO. Arterioscler Thromb Vasc Biol 29:1156–1160

    Article  CAS  PubMed  Google Scholar 

  62. Vanhoutte PM (2009) Say NO to ET. J Auton Nerv Syst 81:271–277

    Article  Google Scholar 

  63. Vanhoutte PM, Shimokawa H, Tang EH, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol 196:193–222

    Article  CAS  Google Scholar 

  64. Vanhoutte PM, Tang EH (2008) Endothelium-dependent contractions: when a good guy turns bad! J Physiol 586:5295–5304

    Article  CAS  PubMed  Google Scholar 

  65. Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B (2005) Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97:908–915

    Article  CAS  PubMed  Google Scholar 

  66. Wölfle SE, Schmidt VJ, Hoyer J, Köhler R, de Wit C (2009) Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo. Cardiovasc Res 82:476–483

    PubMed  Google Scholar 

  67. Wolin MS (2009) Reactive oxygen species and the control of vascular function. Am J Physiol Heart Circ Physiol 296:H539–H549

    Article  CAS  PubMed  Google Scholar 

  68. Yu J, deMuinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC (2005) Endothelial nitric oxide synthase is critical for ischemic remodelling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci U S A 102:10999–11004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Romanian National Authority for Scientific Research via UEFISCSU and CNCSIS (grant ID_1156/2007-2010 from the program IDEI of plan PNCDI-II), the Belgian Ministry for Science Policy (Interuniversity Attraction Pole IUAP P6/28), the Research Foundation-Flanders (G.0172.03 and G.0565.07), the Research Council of the KU Leuven (GOA 2004/07 and EF/95/010).

The editors initiated this special issue as a result of discussions originating at “Works and Views in Endothelium-Dependent Vasodilation,” an international symposium organized by D. N. Serban in May 2009, in Iasi, Romania, which was supported from the mentioned Romanian grant and sponsored by DABMMed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Vanhoutte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serban, D.N., Nilius, B. & Vanhoutte, P.M. The endothelial saga: the past, the present, the future. Pflugers Arch - Eur J Physiol 459, 787–792 (2010). https://doi.org/10.1007/s00424-010-0805-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-010-0805-5

Keywords

Navigation