Skip to main content

Advertisement

Log in

Direct activation of transient receptor potential V1 by nickel ions

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

TRPV1 is a member of the transient receptor potential (TRP) family of cation channels. It is expressed in sensory neurons of the dorsal root and trigeminal ganglia as well as in a wide range of non-neuronal tissues. The channel proteins serve as polymodal receptors for various potentially harmful stimuli to prevent tissue damage by mediating unpleasant or painful sensations. Using Ca imaging and voltage-clamp recordings, we found that low millimolar doses of Ni2+ (NiSO4) are able to induce non-specific cation currents in a capsaicin-sensitive population of cultured mouse trigeminal ganglion neurons. In addition, we show that NiSO4 elicits intracellular Ca2+ transients and membrane currents in HEK293 and CHO cells heterologously expressing rat TRPV1. The use of voltage ramps from −100 to +100 mV revealed a strong outward rectification of these currents. Application of NiSO4 to the cytoplasmic face of inside-out membrane patches did not induce any currents. However, delivering NiSO4 to the extracellular face during outside-out recordings, we observed a significant increase in open probability paralleled by a decrease in channel conductance. When combined with other TRPV1 agonists, NiSO4 produces a bimodal effect on TRPV1 activity, depending on the strength and concentration of the second stimulus. Outwardly directed currents induced by low doses of capsaicin and nearly neutral pH values (∼pH = 7.0–6.5) were augmented by low doses of NiSO4. In contrast, responses to stronger stimuli were reduced by NiSO4. Moreover, we were able to identify amino acids involved in the effect of NiSO4 on TRPV1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahern G, Brooks I, Miyares R, Wang X (2005) Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci 25:5109–5116

    Article  CAS  PubMed  Google Scholar 

  2. Ahern G, Wang X, Miyares R (2006) Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 281:8991–8995

    Article  CAS  PubMed  Google Scholar 

  3. Bergman M, Bergman B, Söremark R (1980) Tissue accumulation of nickel released due to electrochemical corrosion of non-precious dental casting alloys. J Oral Rehabil 7:325–330

    Article  CAS  PubMed  Google Scholar 

  4. Boulais N, Pereira U, Lebonvallet N, Misery L (2007) The whole epidermis as the forefront of the sensory system. Exp Dermatol 16:634–635

    Article  PubMed  Google Scholar 

  5. Boulais N, Misery L (2008) The epidermis: a sensory tissue. Eur J Dermatol 18:119–127

    PubMed  Google Scholar 

  6. Brauchi S, Orio P, Latorre R (2004) Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc Natl Acad Sci U S A 101:15494–15499

    Article  CAS  PubMed  Google Scholar 

  7. Caterina M, Schumacher M, Tominaga M, Rosen T, Levine J, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  8. Clapham D (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  CAS  PubMed  Google Scholar 

  9. Damann N, Rothermel M, Klupp B, Mettenleiter T, Hatt H, Wetzel C (2006) Chemosensory properties of murine nasal and cutaneous trigeminal neurons identified by viral tracing. BMC Neurosci 7:46

    Article  PubMed  Google Scholar 

  10. Goswami C, Dreger M, Otto H, Schwappach B, Hucho F (2006) Rapid disassembly of dynamic microtubules upon activation of the capsaicin receptor TRPV1. J Neurochem 96:254–266

    Article  CAS  PubMed  Google Scholar 

  11. Gunthorpe M, Szallasi A (2008) Peripheral TRPV1 receptors as targets for drug development: new molecules and mechanisms. Curr Pharm Des 14:32–41

    Article  CAS  PubMed  Google Scholar 

  12. Huang S, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros T, Krey J, Chu C, Miller J, Davies S, Geppetti P, Walker J, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci U S A 99:8400–8405

    Article  CAS  PubMed  Google Scholar 

  13. Hwang S, Cho H, Kwak J, Lee S, Kang C, Jung J, Cho S, Min K, Suh Y, Kim D, Oh U (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci U S A 97:6155–6160

    Article  CAS  PubMed  Google Scholar 

  14. Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M (2006) The neurobiology of itch. Nat Rev Neurosci 7:535–547

    Article  CAS  PubMed  Google Scholar 

  15. Imamachi N, Park G, Lee H, Anderson D, Simon M, Basbaum A, Han S (2009) TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc Natl Acad Sci U S A 106:11330–11335

    Article  CAS  PubMed  Google Scholar 

  16. Jordt S, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci U S A 97:8134–8139

    Article  CAS  PubMed  Google Scholar 

  17. Kim A, Tang Z, Liu Q, Patel K, Maag D, Geng Y, Dong X (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133:475–485

    Article  CAS  PubMed  Google Scholar 

  18. Matta J, Miyares R, Ahern G (2007) TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J Physiol 578:397–411

    Article  CAS  PubMed  Google Scholar 

  19. Misery L, Hermier M, Staniek V, Kanitakis J, Gaudillere A, Lachaux A, Schmitt D, Claudy A (1999) Congenital insensitivity to pain with anhidrosis: absence of substance P receptors in the skin. Br J Dermatol 140:190–191

    Article  CAS  PubMed  Google Scholar 

  20. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005) Gating of TRP channels: a voltage connection? J Physiol 567:35–44

    Article  CAS  PubMed  Google Scholar 

  21. Paus R, Schmelz M, Bíró T, Steinhoff M (2006) Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 116:1174–1186

    Article  CAS  PubMed  Google Scholar 

  22. Platika D, Boulos M, Baizer L, Fishman M (1985) Neuronal traits of clonal cell lines derived by fusion of dorsal root ganglia neurons with neuroblastoma cells. Proc Natl Acad Sci U S A 82:3499–3503

    Article  CAS  PubMed  Google Scholar 

  23. Riera C, Vogel H, Simon S, le Coutre J (2007) Artificial sweeteners and salts producing a metallic taste sensation activate TRPV1 receptors. Am J Physiol Regul Integr Comp Physiol 293:R626–R634

    CAS  PubMed  Google Scholar 

  24. Riera C, Vogel H, Simon S, Damak S, le Coutre J (2009) Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels. J Neurosci 29:2654–2662

    Article  CAS  PubMed  Google Scholar 

  25. Samitz M, Katz S (1975) Nickel dermatitis hazards from prostheses. In vivo and in vitro solubilization studies. Br J Dermatol 92:287–290

    Article  CAS  PubMed  Google Scholar 

  26. Schmelz M, Schmidt R, Bickel A, Handwerker H, Torebjörk H (1997) Specific C-receptors for itch in human skin. J Neurosci 17:8003–8008

    CAS  PubMed  Google Scholar 

  27. Schmelz M, Schmid R, Handwerker H, Torebjörk H (2000) Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres. Brain 123(Pt 3):560–571

    Article  PubMed  Google Scholar 

  28. Shim W, Tak M, Lee M, Kim M, Koo J, Lee C, Oh U (2007) TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J Neurosci 27:2331–2337

    Article  CAS  PubMed  Google Scholar 

  29. Sigel A, Sigel H, Sigel RKO (2007) Nickel and its surprising impact in nature. Metal ions in life sciences, vol 2. Wiley, Hoboken

    Google Scholar 

  30. Smart D, Gunthorpe M, Jerman J, Nasir S, Gray J, Muir A, Chambers J, Randall A, Davis J (2000) The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br J Pharmacol 129:227–230

    Article  CAS  PubMed  Google Scholar 

  31. Southall M, Li T, Gharibova L, Pei Y, Nicol G, Travers J (2003) Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther 304:217–222

    Article  CAS  PubMed  Google Scholar 

  32. Staender S, Moormann C, Schumacher M, Buddenkotte J, Artuc M, Shpacovitch V, Brzoska T, Lippert U, Henz B, Luger T, Metze D, Steinhoff M (2004) Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures. Exp Dermatol 13:129–139

    Article  CAS  Google Scholar 

  33. Susankova K, Ettrich R, Vyklicky L, Teisinger J, Vlachova V (2007) Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1). J Neurosci 27:7578–7585

    Article  CAS  PubMed  Google Scholar 

  34. Tominaga M, Caterina M, Malmberg A, Rosen T, Gilbert H, Skinner K, Raumann B, Basbaum A, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  35. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    Article  CAS  PubMed  Google Scholar 

  36. Zufall F, Hatt H, Firestein S (1993) Rapid application and removal of second messengers to cyclic nucleotide-gated channels from olfactory epithelium. Proc Natl Acad Sci U S A 90:9335–9339

    Article  CAS  PubMed  Google Scholar 

  37. Zygmunt P, Petersson J, Andersson D, Chuang H, Sørgård M, Di Marzo V, Julius D, Högestätt E (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank H. Bartel, T. Piofczyk, and Y. Cinar for technical assistance and H. Benecke for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian H. Wetzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luebbert, M., Radtke, D., Wodarski, R. et al. Direct activation of transient receptor potential V1 by nickel ions. Pflugers Arch - Eur J Physiol 459, 737–750 (2010). https://doi.org/10.1007/s00424-009-0782-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0782-8

Keywords

Navigation