Skip to main content
Log in

The use of yeast to understand TRP-channel mechanosensitivity

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Mechanosensitive (MS) ion channels likely underlie myriad force-sensing processes, from basic osmotic regulation to specified sensations of animal hearing and touch. Albeit important, the molecular identities of many eukaryotic MS channels remain elusive, let alone their working mechanisms. This is in stark contrast to our advanced knowledge on voltage- or ligand-sensitive channels. Several members of transient receptor potential (TRP) ion channel family have been implicated to function in mechanosensation and are recognized as promising candidate MS channels. The yeast TRP homolog, TRPY1, is clearly a first-line force transducer. It can be activated by hypertonic shock in vivo and by membrane stretch force in excised patches under patch clamp, making it a useful model for understanding TRP channel mechanosensitivity in general. TRPY1 offers two additional research advantages: (1) It has a large (∼300 pS) unitary conductance and therefore a favorable S/N ratio. (2) Budding yeast allows convenient and efficient genetic and molecular manipulations. In this review, we focus on the current research of TRPY1 and discuss its prospect. We also describe the use of yeast as a system to express and characterize animal TRP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bandell M, Dubin AE, Petrus MJ, Orth A, Mathur J, Hwang SW, Patapoutian A (2006) High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nat Neurosci 9:493–500

    Article  PubMed  CAS  Google Scholar 

  2. Batiza AF, Schulz T, Masson PH (1996) Yeast respond to hypotonic shock with a calcium pulse. J Biol Chem 271:23357–23362

    Article  PubMed  CAS  Google Scholar 

  3. Bertl A, Slayman CL (1990) Cation-selective channels in the vacuolar membrane of Saccharomyces: dependence on calcium, redox state, and voltage. Proc Natl Acad Sci USA 87:7824–7828

    Article  PubMed  CAS  Google Scholar 

  4. Booth IR, Edwards MD, Black S, Schumann U, Miller S (2007) Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5:431–440

    Article  PubMed  CAS  Google Scholar 

  5. Carlile M, Watkinson S, Gooday G (2001) The fungi. Academic, San Diego

    Google Scholar 

  6. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev 8:510–521

    Article  CAS  Google Scholar 

  7. Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575

    Article  PubMed  CAS  Google Scholar 

  8. Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    PubMed  CAS  Google Scholar 

  9. Corry B, Martinac B (2008) Bacterial mechanosensitive channels: experiment and theory. Biochim Biophys Acta 1778:1859–1870

    Article  PubMed  CAS  Google Scholar 

  10. Denis V, Cyert MS (2002) Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156:29–34

    Article  PubMed  CAS  Google Scholar 

  11. Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K (2002) Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci USA 99:14994–14999

    Article  PubMed  Google Scholar 

  12. Domene C, Vemparala S, Klein ML, Venien-Bryan C, Doyle DA (2006) Role of aromatic localization in the gating process of a potassium channel. Biophys J 90:L01–L03

    Article  PubMed  CAS  Google Scholar 

  13. Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593

    Article  PubMed  CAS  Google Scholar 

  14. Ernstrom GG, Chalfie M (2002) Genetics of sensory mechanotransduction. Annu Rev Genet 36:411–453

    Article  PubMed  CAS  Google Scholar 

  15. Gao X, Wu L, O'Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

    Article  PubMed  CAS  Google Scholar 

  16. Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honore E (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455:1097–1103

    Article  PubMed  CAS  Google Scholar 

  17. Grandl J, Hu H, Bandell M, Bursulaya B, Schmidt M, Petrus M, Patapoutian A (2008) Pore region of TRPV3 ion channel is specifically required for heat activation. Nat Neurosci 11:1007–1013

    Article  PubMed  CAS  Google Scholar 

  18. Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  CAS  Google Scholar 

  19. Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science (New York, NY) 242:762–765

    CAS  Google Scholar 

  20. Guthrie C, Fink G (1990) Guide to yeast genetics and molecular and cell biology (Part A). Methods in enzymology 194. Academic, San Diego

    Google Scholar 

  21. Guthrie C, Fink G (2002) Guide to Yeast Genetics and Molecular and Cell Biology (Part B). Methods in Enzymology 350. Academic, San Diego

    Google Scholar 

  22. Hamill OP (2006) Twenty odd years of stretch-sensitive channels. Pflugers Arch 453:333–351

    Article  PubMed  CAS  Google Scholar 

  23. John Haynes W, Zhou XL, Su ZW, Loukin SH, Saimi Y, Kung C (2008) Indole and other aromatic compounds activate the yeast TRPY1 channel. FEBS lett 582:1514–1518

    Article  PubMed  CAS  Google Scholar 

  24. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science (New York, NY) 245:1073–1080

    CAS  Google Scholar 

  25. Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, Lee HW, Son W, Yim J, Park CS, Kernan MJ, Kim C (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84

    Article  PubMed  CAS  Google Scholar 

  26. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  PubMed  CAS  Google Scholar 

  27. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    Article  PubMed  CAS  Google Scholar 

  28. Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci USA 100(Suppl 2):14531–14536

    Article  PubMed  CAS  Google Scholar 

  29. Liu L, Li Y, Wang R, Yin C, Dong Q, Hing H, Kim C, Welsh MJ (2007) Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450:294–298

    Article  PubMed  CAS  Google Scholar 

  30. Loukin SH, Su Z, Kung C (2009) Hypotonic shocks activate rat TRPV4 in yeast in the absence of polyunsaturated fatty acids. FEBS lett 583:754–758

    Article  PubMed  CAS  Google Scholar 

  31. Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865

    Article  PubMed  CAS  Google Scholar 

  32. Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    Article  PubMed  CAS  Google Scholar 

  33. Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460

    Article  PubMed  CAS  Google Scholar 

  34. Mayer ML (2006) Glutamate receptors at atomic resolution. Nature 440:456–462

    Article  PubMed  CAS  Google Scholar 

  35. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105:7451–7455

    Article  PubMed  CAS  Google Scholar 

  36. Myers BR, Bohlen CJ, Julius D (2008) A yeast genetic screen reveals a critical role for the pore helix domain in TRP channel gating. Neuron 58:362–373

    Article  PubMed  CAS  Google Scholar 

  37. Myers BR, Saimi Y, Julius D, Kung C (2008) Multiple unbiased prospective screens identify TRP channels and their conserved gating elements. J Gen Physiol 132:481–486

    Article  PubMed  CAS  Google Scholar 

  38. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  PubMed  CAS  Google Scholar 

  39. Palmer CP, Zhou XL, Lin J, Loukin SH, Kung C, Saimi Y (2001) A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane. Proc Natl Acad Sci USA 98:7801–7805

    Article  PubMed  CAS  Google Scholar 

  40. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science (New York, NY) 237:749–753

    CAS  Google Scholar 

  41. Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Methods Enzymol 428:183–207

    Article  PubMed  CAS  Google Scholar 

  42. Perozo E (2006) Gating prokaryotic mechanosensitive channels. Nat Rev Mol Cell Biol 7:109–119

    Article  PubMed  CAS  Google Scholar 

  43. Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9:696–703

    Article  PubMed  CAS  Google Scholar 

  44. Saimi Y, Zhou X, Loukin SH, Haynes W, Kung C (2007) Current topics in membranes. Elsevier, New York

    Google Scholar 

  45. Sine SM, Engel AG (2006) Recent advances in Cys-loop receptor structure and function. Nature 440:448–455

    Article  PubMed  CAS  Google Scholar 

  46. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591

    Article  PubMed  CAS  Google Scholar 

  47. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  PubMed  CAS  Google Scholar 

  48. Su Z, Zhou X, Haynes WJ, Loukin SH, Anishkin A, Saimi Y, Kung C (2007) Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels. Proc Natl Acad Sci USA 104:19607–19612

    Article  PubMed  CAS  Google Scholar 

  49. Su Z, Zhou X, Loukin SH, Saimi Y, Kung C (2009) Mechanical force and cytoplasmic Ca(2+) activate yeast TRPY1 in parallel. J Membr Biol 227:141–150

    Article  PubMed  CAS  Google Scholar 

  50. Sukharev S, Anishkin A (2004) Mechanosensitive channels: what can we learn from ‘simple’ model systems? Trends Neurosci 27:345–351

    Article  PubMed  CAS  Google Scholar 

  51. Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456:891–897

    Article  PubMed  CAS  Google Scholar 

  52. Ulmschneider MB, Sansom MS, Di Nola A (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59:252–265

    Article  PubMed  CAS  Google Scholar 

  53. Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    Article  PubMed  CAS  Google Scholar 

  54. Vriens J, Owsianik G, Voets T, Droogmans G, Nilius B (2004) Invertebrate TRP proteins as functional models for mammalian channels. Pflugers Arch 449:213–226

    PubMed  CAS  Google Scholar 

  55. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    Article  PubMed  CAS  Google Scholar 

  56. Wada Y, Ohsumi Y, Tanifuji M, Kasai M, Anraku Y (1987) Vacuolar ion channel of the yeast, Saccharomyces cerevisiae. J Biol Chem 262:17260–17263

    PubMed  CAS  Google Scholar 

  57. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  PubMed  CAS  Google Scholar 

  58. Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    Article  PubMed  CAS  Google Scholar 

  59. Zhou X, Su Z, Anishkin A, Haynes WJ, Friske EM, Loukin SH, Kung C, Saimi Y (2007) Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc Natl Acad Sci USA 104:15555–15559

    Article  PubMed  CAS  Google Scholar 

  60. Zhou XL, Batiza AF, Loukin SH, Palmer CP, Kung C, Saimi Y (2003) The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proc Natl Acad Sci USA 100:7105–7110

    Article  PubMed  CAS  Google Scholar 

  61. Zhou XL, Vaillant B, Loukin SH, Kung C, Saimi Y (1995) YKC1 encodes the depolarization-activated K+ channel in the plasma membrane of yeast. FEBS lett 373:170–176

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenwei Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Z., Zhou, X., Loukin, S.H. et al. The use of yeast to understand TRP-channel mechanosensitivity. Pflugers Arch - Eur J Physiol 458, 861–867 (2009). https://doi.org/10.1007/s00424-009-0680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0680-0

Keywords

Navigation