Skip to main content
Log in

Essential role of vasopressin-regulated urea transport processes in the mammalian kidney

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Movement of urea across plasma membranes is modulated by specialized urea transporter proteins. Two urea-transporter genes have been cloned: UT-A (Slc14a2) and UT-B (Slc14a1). In the mammalian kidney, urea transporters are essential for the urinary concentrating mechanism and maintaining body fluid homeostasis. In this article, we discuss (1) an overview of historic discoveries in urea transport mechanisms; (2) an overview of recent discoveries in the regulation of urea transporters; (3) physiological studies in UT-A1/3 −/− mice highlighting the essential role of urea transporters in the urinary concentrating mechanism; and (4) physiological studies in UT-A2 and UT-B knockout mice examining the role of countercurrent exchange in the production of a maximally concentrated urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. As the latter part of this review focuses on mouse models of urea transport, we have focused on descriptions of the mouse kidney. For a review of other species, please see [27, 28].

References

  1. Atherton JC, Hai MA, Thomas S (1968) Effects of water diuresis and osmotic (mannitol) diuresis on urinary solute excretion by the conscious rat. J Physiol 197:395–410

    PubMed  CAS  Google Scholar 

  2. Gamble JL, McKhann CF, Butler AM, Tuthill E (1934) An economy of water in renal function referable to urea. Am J Physiol 109:139–154

    CAS  Google Scholar 

  3. Gamble JL, Putnam MC, McKhann CF (1929) The optimal water requirement in renal function. Am J Physiol 88

  4. Shannon JA (1936) Glomerular filtration and urea excretion in relation to urine flow in the dog. Am J Physiol 117:206–225

    CAS  Google Scholar 

  5. Shannon JA (1938) Urea excretion in the normal dog during forced diuresis. Am J Physiol 122:782–787

    CAS  Google Scholar 

  6. Morgan T, Berliner RW (1968) Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am J Physiol 215:108–115

    PubMed  CAS  Google Scholar 

  7. Morgan T, Sakai F, Berliner RW (1968) In vitro permeability of medullary collecting ducts to water and urea. Am J Physiol 214:574–581

    PubMed  CAS  Google Scholar 

  8. Grantham JJ, Burg MB (1966) Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol 211:255–259

    PubMed  CAS  Google Scholar 

  9. Sands JM, Knepper MA (1987) Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest 79:138–147

    Article  PubMed  CAS  Google Scholar 

  10. Chou CL, Knepper MA (1989) Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol 257:F359–F365

    PubMed  CAS  Google Scholar 

  11. Chou CL, Sands JM, Nonoguchi H, Knepper MA (1990) Concentration dependence of urea and thiourea transport in rat inner medullary collecting duct. Am J Physiol 258:F486–F494

    PubMed  CAS  Google Scholar 

  12. Star RA, Nonoguchi H, Balaban R, Knepper MA (1988) Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81:1879–1888

    Article  PubMed  CAS  Google Scholar 

  13. Wall SM, Han JS, Chou CL, Knepper MA (1992) Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262:F989–F998

    PubMed  CAS  Google Scholar 

  14. Nielsen S, Knepper MA (1993) Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Physiol 265:F204–F213

    PubMed  CAS  Google Scholar 

  15. Chou CL, Sands JM, Nonoguchi H, Knepper MA (1990) Urea gradient-associated fluid absorption with sigma urea = 1 in rat terminal collecting duct. Am J Physiol 258:F1173–F1180

    PubMed  CAS  Google Scholar 

  16. Fenton RA et al (2002) Characterization of mouse urea transporters UT-A1 and UT-A2. Am J Physiol Renal Physiol 283:F817–F825

    PubMed  CAS  Google Scholar 

  17. Lucien N et al (1998) Characterization of the gene encoding the human Kidd blood group/urea transporter protein. Evidence for splice site mutations in Jknull individuals. J Biol Chem 273:12973–12980

    Article  PubMed  CAS  Google Scholar 

  18. Nakayama Y et al (2001) Cloning of the rat Slc14a2 gene and genomic organization of the UT-A urea transporter. Biochim Biophys Acta 1518:19–26

    PubMed  CAS  Google Scholar 

  19. Mistry AC et al (2005) A novel type of urea transporter, UT-C, is highly expressed in proximal tubule of seawater eel kidney. Am J Physiol Renal Physiol 288:F455–F465

    Article  PubMed  CAS  Google Scholar 

  20. Fenton RA et al (2000) Molecular characterization of a novel UT-A urea transporter isoform (UT-A5) in testis. Am J Physiol Cell Physiol 279:C1425–C1431

    PubMed  CAS  Google Scholar 

  21. Karakashian A et al (1999) Cloning and characterization of two new isoforms of the rat kidney urea transporter: UT-A3 and UT-A4. J Am Soc Nephrol 10:230–237

    PubMed  CAS  Google Scholar 

  22. Shayakul C, Steel A, Hediger MA (1996) Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J Clin Invest 98:2580–2587

    Article  PubMed  CAS  Google Scholar 

  23. Smith CP et al (1995) Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J Clin Invest 96:1556–1563

    Article  PubMed  CAS  Google Scholar 

  24. Smith CP, Potter EA, Fenton RA, Stewart GS (2004) Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. Am J Physiol Cell Physiol 287:C1087–C1093

    Article  PubMed  CAS  Google Scholar 

  25. Olives B et al (1994) Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 269:31649–31652

    PubMed  CAS  Google Scholar 

  26. You G et al (1993) Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847

    Article  PubMed  CAS  Google Scholar 

  27. Sands JM (2003) Mammalian urea transporters. Annu Rev Physiol 9:9

    Google Scholar 

  28. McDonald MD, Smith CP, Walsh PJ (2006) The physiology and evolution of urea transport in fishes. J Membr Biol 212:93–107

    Article  PubMed  CAS  Google Scholar 

  29. Nielsen S et al (1996) Cellular and subcellular localization of the vasopressin-regulated urea transporter in rat kidney. Proc Natl Acad Sci USA 93:5495–500

    Article  PubMed  CAS  Google Scholar 

  30. Stewart GS et al (2004) The basolateral expression of mUT-A3 in the mouse kidney. Am J Physiol Renal Physiol 286:F979–F987

    Article  PubMed  CAS  Google Scholar 

  31. Terris JM, Knepper MA, Wade JB (2001) UT-A3: localization and characterization of an additional urea transporter isoform in the IMCD. Am J Physiol Renal Physiol 280:F325–F332

    PubMed  CAS  Google Scholar 

  32. Wade JB et al (2000) UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am J Physiol Renal Physiol 278:F52–F62

    PubMed  CAS  Google Scholar 

  33. Tsukaguchi H et al (1997) Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. J Clin Invest 99:1506–1515

    Article  PubMed  CAS  Google Scholar 

  34. Xu Y et al (1997) Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int 51:138–146

    Article  PubMed  CAS  Google Scholar 

  35. Promeneur D et al (1996) Evidence for distinct vascular and tubular urea transporters in the rat kidney. J Am Soc Nephrol 7:852–860

    PubMed  CAS  Google Scholar 

  36. Clapp JR (1965) Urea reabsorption by the proximal tubule of the dog. Proc Soc Exp Biol Med 120:521–523

    PubMed  CAS  Google Scholar 

  37. Clapp JR (1966) Renal tubular reabsorption of urea in normal and protein-depleted rats. Am J Physiol 210:1304–1308

    PubMed  CAS  Google Scholar 

  38. Lassiter WE, Gottschalk CW, Mylle M (1961) Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol 200:1139–1147

    PubMed  CAS  Google Scholar 

  39. Sands JM (2000) Regulation of urea transporter proteins in kidney and liver Mt Sinai. J Med 67:112–119

    CAS  Google Scholar 

  40. Sands JM (2004) Renal urea transporters. Curr Opin Nephrol Hypertens 13:525–532

    Article  PubMed  CAS  Google Scholar 

  41. Hoffert JD et al (2008) Vasopressin-stimulated increase in phosphorylation at Ser-269 potentiates plasma membrane retention of Aquaporin-2. J Biol Chem 283(36):24617–24627

    Article  PubMed  CAS  Google Scholar 

  42. Blount MA et al (2007) Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. Am J Physiol Renal Physiol 293:F1308–F1313

    Article  PubMed  CAS  Google Scholar 

  43. Klein JD et al (2006) Vasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts. J Am Soc Nephrol 17:2680–2686

    Article  PubMed  CAS  Google Scholar 

  44. Blount MA et al (2008) Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am J Physiol Renal Physiol 295:F295–F299

    Article  PubMed  CAS  Google Scholar 

  45. Zhang C, Sands JM, Klein JD (2002) Vasopressin rapidly increases phosphorylation of UT-A1 urea transporter in rat IMCDs through PKA. Am J Physiol Renal Physiol 282:F85–F90

    PubMed  CAS  Google Scholar 

  46. Chen G et al (2006) Loss of N-linked glycosylation reduces urea transporter UT-A1 response to vasopressin. J Biol Chem 281:27436–27442

    Article  PubMed  CAS  Google Scholar 

  47. Fenton RA, Moeller HB (2008) Recent discoveries in vasopressin-regulated aquaporin-2 trafficking. Prog Brain Res 170:571–579

    Article  PubMed  CAS  Google Scholar 

  48. Kamsteeg EJ et al (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349

    Article  PubMed  CAS  Google Scholar 

  49. Snyder PM (2005) Minireview: regulation of epithelial Na+ channel trafficking. Endocrinology 146:5079–5085

    Article  PubMed  CAS  Google Scholar 

  50. Stewart GS, O’Brien JH, Smith CP (2008) Ubiquitination regulates the plasma membrane expression of renal UT-A urea transporters. Am J Physiol Cell Physiol 295:C121–C129

    Article  PubMed  CAS  Google Scholar 

  51. Chen G et al (2008) MDM2 E3 Ubiquitin Ligase Mediates UT-A1 Urea Transporter Ubiquitination and Degradation. Am J Physiol Renal Physiol 295(5):1528–1534

    Article  CAS  Google Scholar 

  52. Fenton RA et al (2004) Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci USA 101:7469–7474

    Article  PubMed  CAS  Google Scholar 

  53. Fenton RA et al (2002) Structure and characterization of the mouse UT-A gene (Slc14a2). Am J Physiol Renal Physiol 282:F630–F638

    PubMed  CAS  Google Scholar 

  54. Fenton RA et al (2005) Renal phenotype of UT-A urea transporter knockout mice. J Am Soc Nephrol 16:1583–1592

    Article  PubMed  CAS  Google Scholar 

  55. Berliner RW, Levinsky NG, Davidson DG, Eden M (1958) Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24:730–744

    Article  PubMed  CAS  Google Scholar 

  56. Berliner RW, Bennett CM (1967) Concentration of urine in the mammalian kidney. Am J Med 42:777–789

    Article  PubMed  CAS  Google Scholar 

  57. Jamison RL, Bennett CM, Berliner RW (1967) Countercurrent multiplication by the thin loops of Henle. Am J Physiol 212:357–366

    PubMed  CAS  Google Scholar 

  58. Ullrich KJ, Jarausch KH (1956) Untersuchungen zum Problem der Harnkonzentrierung und Harnverdunnung. Pflugers Arch 262:S537–S550

    Article  Google Scholar 

  59. Kokko JP, Rector FC (1972) Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2:214–223

    Article  PubMed  CAS  Google Scholar 

  60. Stephenson JL (1972) Concentration of urine in a central core model of the renal counterflow system. Kidney Int 2:85–94

    Article  PubMed  CAS  Google Scholar 

  61. Kuhn W, Ramel A (1959) Activer Salztransport als moeglicher (und wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere. Helv Chim Acta 42:628–660

    Article  CAS  Google Scholar 

  62. Imai M, Kokko JP (1974) Sodium chloride, urea, and water transport in the thin ascending limb of Henle. Generation of osmotic gradients by passive diffusion of solutes. J Clin Invest 53:393–402

    Article  PubMed  CAS  Google Scholar 

  63. Kondo Y et al (1993) Direct evidence for the absence of active Na+ reabsorption in hamster ascending thin limb of Henle’s loop. J Clin Invest 91:5–11

    Article  PubMed  CAS  Google Scholar 

  64. Knepper MA, Chou CL, Layton HE (1993) How is urine concentrated by the renal inner medulla. Contrib Nephrol 102:144–160

    PubMed  CAS  Google Scholar 

  65. Knepper MA, Saidel GM, Hascall VC, Dwyer T (2003) Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol 284:F433–F446

    PubMed  CAS  Google Scholar 

  66. Thomas SR (2000) Inner medullary lactate production and accumulation: a vasa recta model. Am J Physiol Renal Physiol 279:F468–F481

    PubMed  CAS  Google Scholar 

  67. Schmidt-Nielsen B (1995) August Krogh Lecture. The renal concentrating mechanism in insects and mammals: a new hypothesis involving hydrostatic pressures. Am J Physiol 268:R1087–R1100

    PubMed  CAS  Google Scholar 

  68. Gamba G, Knepper MA (2004) In: Brenner BM (ed) Brenner and Rector’s the kidney. Saunders, Philadelphia, pp 599–636

    Google Scholar 

  69. Sands JM (2007) Critical role of urea in the urine-concentrating mechanism. J Am Soc Nephrol 18:670–671

    Article  PubMed  CAS  Google Scholar 

  70. Pannabecker TL, Dantzler WH, Layton HE, Layton AT (2008) Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla. Am J Physiol Renal Physiol 295(5):1271–1285

    Article  CAS  Google Scholar 

  71. Dicker SE (1949) Effect of the protein content of the diet on the glomerular filtration rate of young and adult rats. J Physiol 108:197–202

    Google Scholar 

  72. Mackay EM, Mackay LL, Addis T (1928) Factors which determine renal weight. V. The protein intake. Am J Physiol 86:459–465

    CAS  Google Scholar 

  73. Seney FD Jr, Persson EG, Wright FS (1987) Modification of tubuloglomerular feedback signal by dietary protein. Am J Physiol 252:F83–F90

    PubMed  Google Scholar 

  74. Seney FD Jr, Wright FS (1985) Dietary protein suppresses feedback control of glomerular filtration in rats. J Clin Invest 75:558–568

    Article  PubMed  CAS  Google Scholar 

  75. Bankir L et al (1993) Is the process of urinary urea concentration responsible for a high glomerular filtration rate. J Am Soc Nephrol 4:1091–1103

    PubMed  CAS  Google Scholar 

  76. Bankir L, Bouby N, Trinh-Trang-Tan MM (1991) Vasopressin-dependent kidney hypertrophy: role of urinary concentration in protein-induced hypertrophy and in the progression of chronic renal failure. Am J Kidney Dis 17:661–665

    PubMed  CAS  Google Scholar 

  77. Bankir L, Chen K, Yang B (2004) Lack of UT-B in vasa recta and red blood cells prevents urea-induced improvement of urinary concentrating ability. Am J Physiol Renal Physiol 286:F144–F151

    Article  PubMed  CAS  Google Scholar 

  78. Uchida S et al (2005) Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT-A2. Mol Cell Biol 25:7357–7363

    Article  PubMed  CAS  Google Scholar 

  79. Yang B et al (2002) Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem 277:10633–10637

    Article  PubMed  CAS  Google Scholar 

  80. Knepper MA, Roch-Ramel F (1987) Pathways of urea transport in the mammalian kidney. Kidney Int 31:629–633

    Article  PubMed  CAS  Google Scholar 

  81. Zhai XY et al (2006) Three-dimensional reconstruction of the mouse nephron. J Am Soc Nephrol 17:77–88

    Article  PubMed  Google Scholar 

  82. Yang B, Verkman AS (2002) Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. J Biol Chem 277:36782–36786

    Article  PubMed  CAS  Google Scholar 

  83. Yang B, Bankir L (2005) Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol Renal Physiol 288:F881–F896

    Article  PubMed  CAS  Google Scholar 

  84. Timmer RT et al (2001) Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am J Physiol Cell Physiol 281:C1318–C1325

    PubMed  CAS  Google Scholar 

  85. Inglese J et al (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci USA 103:11473–11478

    Article  PubMed  CAS  Google Scholar 

  86. Armsen T, Glossmann V, Weinzierl M, Edel HH (1986) Familial proximal tubular azotemia. Elevated urea plasma levels in normal kidney function. Dtsch Med Wochenschr 111:702–706

    Article  PubMed  CAS  Google Scholar 

  87. Hsu CH et al (1978) Familial azotemia. Impaired urea excretion despite normal renal function. N Engl J Med 298:117–121

    Article  PubMed  CAS  Google Scholar 

  88. Ranade K et al (2001) Genetic variation in the human urea transporter-2 is associated with variation in blood pressure. Hum Mol Genet 10:2157–2164

    Article  PubMed  CAS  Google Scholar 

  89. Jacob VA et al (2008) Magnetic resonance imaging of urea transporter knockout mice shows renal pelvic abnormalities. Kidney Int 74:1202–1208

    Article  PubMed  CAS  Google Scholar 

  90. Frohlich O et al (1991) Urea transport deficiency in Jk(a-b-) erythrocytes. Am J Physiol 260:C778–C783

    PubMed  CAS  Google Scholar 

  91. Olives B et al (1995) Kidd blood group and urea transport function of human erythrocytes are carried by the same protein. J Biol Chem 270:15607–15610

    Article  PubMed  CAS  Google Scholar 

  92. Sands JM et al (1992) Urinary concentrating ability in patients with Jk(a-b-) blood type who lack carrier-mediated urea transport. J Am Soc Nephrol 2:1689–1696

    PubMed  CAS  Google Scholar 

  93. Fenton RA, Smith CP, Knepper MA (2006) Role of collecting duct urea transporters in the kidney—insights from mouse models. J Membr Biol 212:119–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

R. A. Fenton is supported by a Marie Curie Intra-European Fellowship and the Danish National Medical Research Council. The Water and Salt Research Center at the University of Aarhus is established and supported by the Danish National Research Foundation (Danmarks Grundforskningsfond).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Fenton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenton, R.A. Essential role of vasopressin-regulated urea transport processes in the mammalian kidney. Pflugers Arch - Eur J Physiol 458, 169–177 (2009). https://doi.org/10.1007/s00424-008-0612-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0612-4

Keywords

Navigation