Skip to main content

Advertisement

Log in

Function and regulation of claudins in the thick ascending limb of Henle

  • Transport Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The thick ascending limb (TAL) of Henle mediates transcellular reabsorption of NaCl while generating a lumen-positive voltage that drives passive paracellular reabsorption of divalent cations. Disturbance of paracellular reabsorption leads to Ca2+ and Mg2+ wasting in patients with the rare inherited disorder of familial hypercalciuric hypomagnesemia with nephrocalcinosis (FHHNC). Recent work has shown that the claudin family of tight junction proteins form paracellular pores and determine the ion selectivity of paracellular permeability. Importantly, FHHNC has been found to be caused by mutations in two of these genes, claudin-16 and claudin-19, and mice with knockdown of claudin-16 reproduce many of the features of FHHNC. Here, we review the physiology of TAL ion transport, present the current view of the role and mechanism of claudins in determining paracellular permeability, and discuss the possible pathogenic mechanisms responsible for FHHNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abuazza G, Becker A, Williams SS et al (2006) Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins. Am J Physiol Renal Physiol 291:F1132–F1141

    Article  PubMed  CAS  Google Scholar 

  2. Amasheh S, Meiri N, Gitter AH et al (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    Article  PubMed  CAS  Google Scholar 

  3. Anderson JM, Van Itallie CM, Fanning AS (2004) Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 16:140–145

    Article  PubMed  CAS  Google Scholar 

  4. Angelow S, Yu ASL (2007) Claudins and paracellular transport: an update. Curr Opin Nephrol Hypertens 16:459–464

    Article  PubMed  CAS  Google Scholar 

  5. Angelow S, El-Husseini R, Kanzawa SA et al (2007) Renal localization and function of the tight junction protein, claudin-19. Am J Physiol Renal Physiol 293:F166–F177

    Article  PubMed  CAS  Google Scholar 

  6. Angelow S, Schneeberger EE, Yu AS (2007) Claudin-8 expression in renal epithelial cells augments the paracellular barrier by replacing endogenous claudin-2. J Membr Biol 215:147–159

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Yosef T, Belyantseva IA, Saunders TL et al (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

    Article  PubMed  CAS  Google Scholar 

  8. Blanchard A, Jeunemaitre X, Coudol P et al (2001) Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int 59:2206–2215

    PubMed  CAS  Google Scholar 

  9. Bourdeau JE, Burg MB (1979) Voltage dependence of calcium transport in the thick ascending limb of Henle’s loop. Am J Physiol 236:F357–F364

    PubMed  CAS  Google Scholar 

  10. Burg M, Good D (1983) Sodium chloride coupled transport in mammalian nephrons. Annu Rev Physiol 45:533–547

    Article  PubMed  CAS  Google Scholar 

  11. Burg MB, Green N (1973) Function of the thick ascending limb of Henle’s loop. Am J Physiol 224:659–668

    PubMed  CAS  Google Scholar 

  12. Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol 58:390–400

    Article  PubMed  CAS  Google Scholar 

  13. Cole DEC, Quamme GA (2000) Inherited disorders of renal magnesium handling. J Am Soc Nephrol 11:1937–1947

    PubMed  CAS  Google Scholar 

  14. Colegio OR, Van Itallie CM, McCrea HJ et al (2002) Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 283:C142–C147

    PubMed  CAS  Google Scholar 

  15. Dai L-J, Ritchie G, Kerstan D et al (2001) Magnesium transport in the renal distal convoluted tubule. Physiol Rev 81:51–84

    PubMed  CAS  Google Scholar 

  16. de Rouffignac C, Quamme G (1994) Renal magnesium handling and its hormonal control. Physiol Rev 74:305–322

    PubMed  Google Scholar 

  17. Di Stefano A, Roinel N, de Rouffignac C et al (1993) Transepithelial Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle’s loop of the mouse is a voltage-dependent process. Ren Physiol Biochem 16:157–166

    PubMed  Google Scholar 

  18. Eisenman G (1962) Cation selective glass electrodes and their mode of operation. Biophys J 2:259–323

    Article  PubMed  CAS  Google Scholar 

  19. Enck AH, Berger UV, Yu AS (2001) Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am J Physiol Renal Physiol 281:F966–F974

    PubMed  CAS  Google Scholar 

  20. Friedman PA (1988) Basal and hormone activated calcium absorption in mouse renal thick ascending limbs. Am J Physiol 254:F62–F70

    PubMed  CAS  Google Scholar 

  21. Fromm M, Palant CE, Bentzel CJ et al (1985) Protamine reversibly decreases paracellular cation permeability in Necturus gallbladder. J Membr Biol 87:141–150

    Article  PubMed  CAS  Google Scholar 

  22. Fromm M, Schulzke JD, Hegel U (1985) Epithelial and subepithelial contributions to transmural electrical resistance of intact rat jejunum, in vitro. Pflügers Arch 405:400–402

    Article  PubMed  CAS  Google Scholar 

  23. Furuse M, Fujita K, Hiiragi T et al (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  PubMed  CAS  Google Scholar 

  24. Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147:891–903

    Article  PubMed  CAS  Google Scholar 

  25. Furuse M, Furuse K, Sasaki H et al (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin–Darby canine kidney I cells. J Cell Biol 153:263–272

    Article  PubMed  CAS  Google Scholar 

  26. Gitelman HJ, Graham JB, Welt LG (1966) A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79:221–235

    PubMed  CAS  Google Scholar 

  27. Gitter AH, Bertog M, Schulzke JD et al (1997) Measurement of paracellular epithelial conductivity by conductance scanning. Pflügers Arch 434:830–840

    Article  PubMed  CAS  Google Scholar 

  28. Gitter AH, Schulzke JD, Sorgenfrei D et al (1997) Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues. J Biochem Biophys Meth 35:81–88

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez-Mariscal L, Namorado Mdel C, Martin D et al (2006) The tight junction proteins claudin-7 and -8 display a different subcellular localization at Henle’s loops and collecting ducts of rabbit kidney. Nephrol Dial Transplant 21:2391–2398

    Article  PubMed  CAS  Google Scholar 

  30. Greger R (1981) Cation selectivity of the isolated perfused cortical thick ascending limb of Henle’s loop of rabbit kidney. Pflügers Arch 390:30–37

    Article  PubMed  CAS  Google Scholar 

  31. Greger R (1981) Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle. A Sodium Dependent Process. Pflügers Arch 390:38–43

    Article  PubMed  CAS  Google Scholar 

  32. Günzel D, Stuiver M, Kausalya PJ et al (2007) Functional characterization of claudin-10 isoforms. Acta Physiol 189 Suppl 653:151

    Google Scholar 

  33. Hebert SC (2004) Calcium and salinity sensing by the thick ascending limb: a journey from mammals to fish and back again. Kidney Int 91(66 Suppl):S28–S33

    Article  CAS  Google Scholar 

  34. Hirano T, Kobayashi N, Itoh T et al (2000) Null mutation of PCLN-1/Claudin-16 results in bovine chronic interstitial nephritis. Genome Res 10:659–663

    Article  PubMed  CAS  Google Scholar 

  35. Hou J, Paul DL, Goodenough DA (2005) Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118:5109–5118

    Article  PubMed  CAS  Google Scholar 

  36. Hou J, Shan Q, Wang T et al (2007) Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 282:17114–17122

    Article  PubMed  CAS  Google Scholar 

  37. Hou J, Renigunta A, Konrad M et al (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118:619–628

    PubMed  CAS  Google Scholar 

  38. Huang C, Miller RT (2007) Regulation of renal ion transport by the calcium-sensing receptor: an update. Curr Opin Nephrol Hypertens 16:437–443

    Article  PubMed  Google Scholar 

  39. Ikari A, Hirai N, Shiroma M et al (2004) Association of paracellin-1 with ZO-1 augments the reabsorption of divalent cations in renal epithelial cells. J Biol Chem 279:54826–54832

    Article  PubMed  CAS  Google Scholar 

  40. Ikari A, Matsumoto S, Harada H et al (2006) Phosphorylation of paracellin-1 at Ser217 by protein kinase A is essential for localization in tight junctions. J Cell Sci 119:1781–1789

    Article  PubMed  CAS  Google Scholar 

  41. Ikari A, Okude C, Sawada H et al (2008) Activation of a polyvalent cation-sensing receptor decreases magnesium transport via claudin-16. Biochim Biophys Acta 1778:283–290

    Article  PubMed  CAS  Google Scholar 

  42. Jensen PK, Fisher RS, Spring KR (1984) Feedback inhibition of NaCI entry in Necturus gallbladder epithelial cells. J Membrane Biol 82:95–104

    Article  CAS  Google Scholar 

  43. Kausalya PJ, Amasheh S, Günzel D et al (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of claudin-16. J Clin Invest 116:878–891

    Article  PubMed  CAS  Google Scholar 

  44. Kehres DG, Maguire ME (2002) Structure, properties and regulation of magnesium transport proteins. BioMetals 15:261–270

    Article  PubMed  CAS  Google Scholar 

  45. Kimizuka H, Koketsu K (1964) Ion transport through cell membrane. J Theoret Biol 6:290–305

    Article  CAS  Google Scholar 

  46. Kiuchi-Saishin Y, Gotoh S, Furuse M et al (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    PubMed  CAS  Google Scholar 

  47. Kleta R, Bockenhauer D (2006) Bartter syndromes and other salt-losing tubulopathies. Nephron Physiol 104:73–80

    Article  CAS  Google Scholar 

  48. Köckerling A, Fromm M (1993) Origin of cAMP dependent Cl secretion from both crypts and surface epithelia of rat intestine. Am J Physiol 264:C1294–C1301

    PubMed  Google Scholar 

  49. Konrad M, Weber S (2003) Recent advances in molecular genetics of hereditary magnesium-losing disorders. J Am Soc Nephrol 14:249–260

    Article  PubMed  Google Scholar 

  50. Konrad M, Schaller A, Seelow D et al (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed  CAS  Google Scholar 

  51. Konrad M, Hou J, Weber S et al (2008) CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 19:171–181

    Article  PubMed  CAS  Google Scholar 

  52. Krämer BK, Bergler T, Stoelcker B et al (2008) Mechanisms of disease: the kidney-specific chloride channels ClCKA and ClCKB, the Barttin subunit, and their clinical relevance. Nature Clin Prac Nephrol 4:38–46

    Article  CAS  Google Scholar 

  53. Landau D (2006) Potassium-related inherited tubulopathies. Cell Mol Life Sci 63:1962–1968

    Article  PubMed  CAS  Google Scholar 

  54. Lee NP, Tong MK, Leung PP et al (2006) Kidney claudin-19: localization in distal tubules and collecting ducts and dysregulation in polycystic renal disease. FEBS Lett 580:923–931

    Article  PubMed  CAS  Google Scholar 

  55. Li WY, Huey CL, Yu AS (2004) Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol Renal Physiol 286:F1063–F1071

    Article  PubMed  CAS  Google Scholar 

  56. Madara JL, Dharmsathaphorn K (1985) Occluding junction structure–function relationships in a cultured epithelial monolayer. J Cell Biol 101:2124–2133

    Article  PubMed  CAS  Google Scholar 

  57. Mandon B, Siga E, Roinel N et al (1993) Ca2+, Mg2+ and K+ transport in the cortical and medullary thick ascending limb of the rat nephron: influence of transepithelial voltage. Pflügers Arch 424:558–560

    Article  PubMed  CAS  Google Scholar 

  58. Martin RB (1990) Bioinorganic chemistry of magnesium. In: Sigel H, Sigel A (eds) Metal ions in biological systems vol 26. Marcell Dekker, New York, pp 1–13

    Google Scholar 

  59. Martinez-Palomo A, Meza I, Beaty G et al (1980) Experimental modulation of occluding junctions in a cultured transporting epithelium. J Cell Biol 87:736–745

    Article  PubMed  CAS  Google Scholar 

  60. Meij IC, van den Heuvel LP, Knoers NV (2002) Genetic disorders of magnesium homeostasis. BioMetals 15:297–307

    Article  PubMed  CAS  Google Scholar 

  61. Møllgård K, Malinowski DN, Saunders NR (1976) Lack of correlation between tight junction morphology and permeability properties in developing choroid plexus. Nature 264:293–294

    Article  Google Scholar 

  62. Müller D, Kausalya PJ, Claverie-Martin F et al (2003) A novel claudin-16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet 73:293–1301

    Article  Google Scholar 

  63. Müller D, Kausalya JP, Meij IC et al (2006) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: blocking endocytosis restores surface expression of a novel Claudin-16 mutant that lacks the entire C-terminal cytosolic tail. Hum Mol Genet 91:3076–3079

    Google Scholar 

  64. Nightingale ER Jr (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387

    Article  CAS  Google Scholar 

  65. Ohta H, Adachi H, Takiguchi M et al (2006) Restricted localization of claudin-16 at the tight junction in the thick ascending limb of Henle’s loop together with claudins 3, 4, and 10 in bovine nephrons. J Vet Med Sci 68:453–463

    Article  PubMed  CAS  Google Scholar 

  66. Okada K, Ishikawa N, Fujimori K et al (2005) Abnormal development of nephrons in claudin-16-defective Japanese black cattle. J Vet Med Sci 67:171–178

    Article  PubMed  Google Scholar 

  67. Pappenheimer JR, Renkin EM, Borrero LM (1951) Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am J Physiol 167:13–46

    PubMed  CAS  Google Scholar 

  68. Piontek J, Winkler L, Wolburg H et al (2008) Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158

    Article  PubMed  CAS  Google Scholar 

  69. Praga MJ, Vara E, Gonzalez-Parra A et al (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419–1425

    Article  PubMed  CAS  Google Scholar 

  70. Rocha AS, Magaldi JB, Kokko JP (1977) Calcium and phosphate transport in isolated segments of rabbit Henle’s loop. J Clin Invest 59:975–983

    Article  PubMed  CAS  Google Scholar 

  71. Rodríguez- Soriano J (1998) Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol 12:315–327

    Article  PubMed  Google Scholar 

  72. Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M (1987) Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol 1:465–472

    Article  PubMed  CAS  Google Scholar 

  73. Satoh J, Romero MF (2002) Mg2+ transport in the kidney. BioMetals 15:285–295

    Article  PubMed  CAS  Google Scholar 

  74. Schlingmann KP, Konrad M, Seyberth HW (2004) Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 19:13–25

    Article  PubMed  Google Scholar 

  75. Schmitz H, Barmeyer C, Fromm M et al (1999) Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis. Gastroenterology 116:301–309

    Article  PubMed  CAS  Google Scholar 

  76. Schultz SG, Solomon AK (1961) Determination of the effective hydrodynamic radii of small molecules by viscometry. J Gen Physiol 44:1189–1199

    Article  PubMed  CAS  Google Scholar 

  77. Schulzke JD, Bentzel CJ, Schulzke I et al (1998) Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatric Res 43:435–441

    Article  CAS  Google Scholar 

  78. Simon DB, Lu Y, Choate KA et al (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  79. Stein WD (1990) Channels, carriers, and pumps: an introduction to membrane transport. Academic, San Diego

    Google Scholar 

  80. Stevenson BR, Anderson JM, Goodenough DA et al (1988) Tight junction structure and ZO-1 content are identical in two strains of Madin–Darby canine kidney cells which differ in transepithelial resistance. J Cell Biol. 107:2401–2408

    Article  PubMed  CAS  Google Scholar 

  81. Suki WN, Rouse D, Ng R et al (1980) Calcium transport in the thick ascending limb of Henle. J Clin Invest 66:1004–1009

    Article  PubMed  CAS  Google Scholar 

  82. Tang VW, Goodenough DA (2003) Paracellular ion channel at the tight junction. Biophys J 84:1660–1673

    Article  PubMed  CAS  Google Scholar 

  83. Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429

    Article  PubMed  CAS  Google Scholar 

  84. Van Itallie CM, Fanning AS, Anderson JM (2003) Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol Renal Physiol 285:F1078–F1084

    PubMed  Google Scholar 

  85. Van Itallie CM, Rogan S, Yu AS et al (2006) Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 291:F1288–F1299

    Article  PubMed  CAS  Google Scholar 

  86. Van Itallie CM, Holmes J, Bridges A et al (2008) The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci 121:298–305

    Article  PubMed  CAS  Google Scholar 

  87. Ward DT (2004) Calcium receptor-mediated intracellular signalling. Cell Calcium 35:217–228

    Article  PubMed  CAS  Google Scholar 

  88. Watson CJ, Rowland M, Warhurst G (2001) Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol 281:C388–C397

    PubMed  CAS  Google Scholar 

  89. Weber S, Hoffmann K, Jeck N et al (2000) Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis maps to chromosome 3q27 and is associated with mutations in the PCLN-1 gene. Eur J Hum Genet 8:414–422

    Article  PubMed  CAS  Google Scholar 

  90. Weber S, Schneider L, Peters M et al (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881

    PubMed  CAS  Google Scholar 

  91. Weber S, Schlingmann KP, Peters M et al (2001) Primary gene structure and expression studies of rodent paracellin-1. J Am Soc Nephrol 12:2664–2672

    PubMed  CAS  Google Scholar 

  92. Wittner M, Desfleurs E, Pajaud S et al (1996) Calcium and magnesium: low passive permeability and tubular secretion in the mouse medullary thick ascending limb of Henle’s loop (MTAL). J Membr Biol 153:27–35

    Article  PubMed  CAS  Google Scholar 

  93. Yu ASL, Enck AH, Lencer WI et al (2003) Claudin-8 expression in Madin–Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278:17350–17359

    Article  PubMed  CAS  Google Scholar 

  94. Zeissig S, Bürgel N, Günzel D et al (2007) Changes in expression and distribution of claudin-2, -5 and -8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    Article  PubMed  CAS  Google Scholar 

  95. Zhao L, Yaoita E, Nameta M et al (2008) Claudin-6 localized in tight junctions of rat podocytes. Am J Physiol Regul Integr Comp Physiol 294:R1856–R1862

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from our own groups that is cited here was supported by the German Research Foundation grant GU447/11-1 (to D.G.) and the National Institutes of Health grant DK062283 (to A.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan S. L. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günzel, D., Yu, A.S.L. Function and regulation of claudins in the thick ascending limb of Henle. Pflugers Arch - Eur J Physiol 458, 77–88 (2009). https://doi.org/10.1007/s00424-008-0589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0589-z

Keywords

Navigation