Skip to main content

Advertisement

Log in

Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Changes in the lipid composition of cardiac myocytes have been reported during cardiac hypertrophy, cardiomyopathy, and infarction. Because a recent study indicates a relation between low phosphatidylinositol-bisphosphate (PIP2) levels and reduced intercellular coupling, we tested the hypothesis that agonist-induced changes in PIP2 can result in a reduction of the functional coupling of cardiomyocytes and, consequently, in changes in conduction velocity. Intercellular coupling was measured by Lucifer Yellow dye transfer in cultured neonatal rat cardiomyocytes. Conduction velocity was measured in cardiomyocytes grown on microelectrode arrays. Intercellular coupling was reduced by angiotensin II (43.7 ± 9.3%, N = 11) and noradrenaline (58.0 ± 10.7%, N = 11). To test if reduced intercellular coupling after agonist stimulation was caused by PIP2-depletion, myocytes were stimulated by angiotensin II (57.3 ± 5.7%, N = 14) and then allowed to recover in medium with or without wortmannin (an inhibitor of PIP2 synthesis). Intercellular coupling fully recovered in control medium (102.1 ± 8.9%, N = 10), whereas no recovery occurred in the presence of wortmannin (69.3 ± 7.8%, N = 12). Inhibition of PKC, calmodulin, or arachidonic acid production did not affect the response to either angiotensin II or noradrenaline. Furthermore, decreasing or increasing PIP2 also decreased and increased intercellular coupling, respectively. This supports the role of PIP2 in the regulation of intercellular coupling. In beating myocytes, conduction velocity was reduced by angiotensin II stimulation, and recovery after wash out was prevented by inhibition of PIP2 production. Reductions in PIP2 inhibit intercellular coupling in cardiomyocytes, and stimulation by physiologically relevant agonists reduces intercellular coupling by this mechanism. The reduction in intercellular coupling lowered conduction velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou NH, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin43: A possible target for the antiarrhythmic peptide analogue rotigaptide (ZP123). J Mol Cell Cardiol 40:790–798

    Article  PubMed  CAS  Google Scholar 

  2. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315

    Article  PubMed  CAS  Google Scholar 

  3. Banach K, Halbach MD, Hu P, Hescheler J, Egert U (2003) Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol Heart Circ Physiol 284:H2114–H2123

    PubMed  CAS  Google Scholar 

  4. Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kleber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    PubMed  CAS  Google Scholar 

  5. Bian J, Cui J, McDonald TV (2001) HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ Res 89:1168–1176

    Article  PubMed  CAS  Google Scholar 

  6. Burt JM (1987) Block of intercellular communication: interaction of intracellular H + and Ca2+. Am J Physiol 253:C607–C612

    PubMed  CAS  Google Scholar 

  7. Calloe K, Nielsen MS, Grunnet M, Schmitt N, Jorgensen NK (2007) KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes. Biochim Biophys Acta 1773:764–773

    Article  PubMed  CAS  Google Scholar 

  8. Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017

    PubMed  CAS  Google Scholar 

  9. Chau LY, Tai HH (1981) Release of arachidonate from diglyceride in human platelets requires the sequential action of a diglyceride lipase and a monoglyceride lipase. Biochem Biophys Res Commun 100:1688–1695

    Article  PubMed  CAS  Google Scholar 

  10. Clerk A, Sugden PH (1997) Regulation of phospholipases C and D in rat ventricular myocytes: stimulation by endothelin-1, bradykinin and phenylephrine. J Mol Cell Cardiol 29:1593–1604

    Article  PubMed  CAS  Google Scholar 

  11. Davidson JS, Baumgarten IM (1988) Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure–activity relationships. J Pharmacol Exp Ther 246:1104–1107

    PubMed  CAS  Google Scholar 

  12. De Mello WC (1996) Renin–angiotensin system and cell communication in the failing heart. Hypertension 27:1267–1272

    PubMed  Google Scholar 

  13. Dent MR, Dhalla NS, Tappia PS (2004) Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am J Physiol Heart Circ Physiol 287:H719–H727

    Article  PubMed  CAS  Google Scholar 

  14. Dhein S, Larsen BD, Petersen JS, Mohr FW (2003) Effects of the new antiarrhythmic peptide ZP123 on epicardial activation and repolarization pattern. Cell Commun Adhes 10:371–378

    Article  PubMed  CAS  Google Scholar 

  15. Doble BW, Ping P, Kardami E (2000) The ε subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301

    PubMed  CAS  Google Scholar 

  16. Egert U, Knott T, Schwarz C, Nawrot M, Brandt A, Rotter S, Diesmann M (2002) MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB. J Neurosci Methods 117:33–42

    Article  PubMed  CAS  Google Scholar 

  17. Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498–1505

    Article  PubMed  CAS  Google Scholar 

  18. Enomoto T, Yamasaki H (1985) Phorbol ester-mediated inhibition of intercellular communication in BALB/c 3T3 cells: relationship to enhancement of cell transformation. Cancer Res 45:2681–2688

    PubMed  CAS  Google Scholar 

  19. Fluri GS, Rudisuli A, Willi M, Rohr S, Weingart R (1990) Effects of arachidonic acid on the gap junctions of neonatal rat heart cells. Pflugers Arch 417:149–156

    Article  PubMed  CAS  Google Scholar 

  20. Halbach M, Egert U, Hescheler J, Banach K (2003) Estimation of action potential changes from field potential recordings in multicellular mouse cardiac myocyte cultures. Cell Physiol Biochem 13:271–284

    Article  PubMed  CAS  Google Scholar 

  21. Hilgemann DW, Ball R (1996) Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  PubMed  CAS  Google Scholar 

  22. Huang CL, Feng S, Hilgemann DW (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 391:803–806

    Article  PubMed  CAS  Google Scholar 

  23. Kaplinsky E, Ogawa S, Balke CW, Dreifus LS (1979) Two periods of early ventricular arrhythmia in the canine acute myocardial infarction model. Circulation 60:397–403

    PubMed  CAS  Google Scholar 

  24. Kem DC, Johnson EI, Capponi AM, Chardonnens D, Lang U, Blondel B, Koshida H, Vallotton MB (1991) Effect of angiotensin II on cytosolic free calcium in neonatal rat cardiomyocytes. Am J Physiol 261:C77–C85

    PubMed  CAS  Google Scholar 

  25. Kleber AG, Riegger CB, Janse MJ (1987) Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. Circ Res 61:271–279

    PubMed  CAS  Google Scholar 

  26. Kwak BR, van Veen TA, Analbers LJS, Jongsma HJ (1995) TPA increases conductance but decreases permeability in neonatal rat cardiomyocyte gap junction channels. Exp Cell Res 220:456–463

    Article  PubMed  CAS  Google Scholar 

  27. Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36:1171–1186

    Article  PubMed  CAS  Google Scholar 

  28. Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF (2000) Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503–1512

    Article  PubMed  CAS  Google Scholar 

  29. Liu SY, Yu CH, Hays JA, Panagia V, Dhalla NS (1997) Modification of heart sarcolemmal phosphoinositide pathway by lysophosphatidylcholine. Biochim Biophys Acta 1349:264–274

    PubMed  CAS  Google Scholar 

  30. Loussouarn G, Park KH, Bellocq C, Baro I, Charpentier F, Escande D (2003) Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J 22:5412–5421

    Article  PubMed  CAS  Google Scholar 

  31. Lurtz MM, Louis CF (2007) Intracellular calcium regulation of connexin43. Am J Physiol Cell Physiol 293:C1806–C1813

    Article  PubMed  CAS  Google Scholar 

  32. Mackay K, Mochly-Rosen D (2001) Localization, anchoring, and functions of protein kinase C isozymes in the heart. J Mol Cell Cardiol 33:1301–1307

    Article  PubMed  CAS  Google Scholar 

  33. Massey KD, Minnich BN, Burt JM (1992) Arachidonic acid and lipoxygenase metabolites uncouple neonatal rat cardiac myocyte pairs. Am J Physiol 263:C494–C501

    PubMed  CAS  Google Scholar 

  34. Maurer P, Weingart R (1987) Cell pairs isolated from adult guinea pig and rat hearts: effects of [Ca2+]i on nexal membrane resistance. Pflugers Arch 409:394–402

    Article  PubMed  CAS  Google Scholar 

  35. Mesaeli N, Tappia PS, Suzuki S, Dhalla NS, Panagia V (2000) Oxidants depress the synthesis of phosphatidylinositol 4,5-bisphosphate in heart sarcolemma. Arch Biochem Biophys 382:48–56

    Article  PubMed  CAS  Google Scholar 

  36. Mouton R, Huisamen B, Lochner A (1991) The effect of ischaemia and reperfusion on sarcolemmal inositol phospholipid and cytosolic inositol phosphate metabolism in the isolated perfused rat heart. Mol Cell Biochem 105:127–135

    Article  PubMed  CAS  Google Scholar 

  37. Nakanishi S, Catt KJ, Balla T (1995) A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc Natl Acad Sci U S A 92:5317–5321

    Article  PubMed  CAS  Google Scholar 

  38. Nasuhoglu C, Feng S, Mao Y, Shammat I, Yamamato M, Earnest S, Lemmon M, Hilgemann DW (2002) Modulation of cardiac PIP2 by cardioactive hormones and other physiologically relevant interventions. Am J Physiol Cell Physiol 283:C223–C234

    PubMed  CAS  Google Scholar 

  39. Noma A, Tsuboi N (1987) Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guinea-pig. J Physiol (Lond) 382:193–211

    CAS  Google Scholar 

  40. Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischaemia and reperfusion. Eur Heart J 5:960–973

    PubMed  CAS  Google Scholar 

  41. Postma FR, Hengeveld T, Alblas J, Giepmans BN, Zondag GC, Jalink K, Moolenaar WH (1998) Acute loss of cell-cell communication caused by G protein-coupled receptors: a critical role for c-Src. J Cell Biol 140:1199–1209

    Article  PubMed  CAS  Google Scholar 

  42. Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G (1994) Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 54:2419–2423

    PubMed  CAS  Google Scholar 

  43. Raptis LH, Brownell HL, Firth KL, MacKenzie LW (1994) A novel technique for the study of intercellular, junctional communication: electroporation of adherent cells on a partly conductive slide. DNA Cell Biol 13:963–975

    Article  PubMed  CAS  Google Scholar 

  44. Sheridan DJ, Penkoske PA, Sobel BE, Corr PB (1980) Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J Clin Invest 65:161–171

    Article  PubMed  CAS  Google Scholar 

  45. Simpson P, Savion S (1982) Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cell. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res 50:101–116

    PubMed  CAS  Google Scholar 

  46. Smith WT, Fleet WF, Johnson TA, Engle CL, Cascio WE (1995) The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling. Experimental Cardiology Group, University of North Carolina. Circulation 92:3051–3060

    PubMed  Google Scholar 

  47. Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378

    Article  PubMed  CAS  Google Scholar 

  48. Suh BC, Inoue T, Meyer T, Hille B (2006) Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science 314:1454–1457

    Article  PubMed  CAS  Google Scholar 

  49. Tappia PS, Liu SY, Shatadal S, Takeda N, Dhalla NS, Panagia V (1999) Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. Am J Physiol 277:H40–H49

    PubMed  CAS  Google Scholar 

  50. Touyz RM, Fareh J, Thibault G, Tolloczko B, Lariviere R, Schiffrin EL (1996) Modulation of Ca2+ transients in neonatal and adult rat cardiomyocytes by angiotensin II and endothelin-1. Am J Physiol 270:H857–H868

    PubMed  CAS  Google Scholar 

  51. van Zeijl L, Ponsioen B, Giepmans BN, Ariaens A, Postma FR, Varnai P, Balla T, Divecha N, Jalink K, Moolenaar WH (2007) Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate. J Cell Biol 177:881–891

    Article  PubMed  CAS  Google Scholar 

  52. Verkerk AO, Veldkamp MW, Coronel R, Wilders R, van Ginneken AC (2001) Effects of cell-to-cell uncoupling and catecholamines on Purkinje and ventricular action potentials: implications for phase-1b arrhythmias. Cardiovasc Res 51:30–40

    Article  PubMed  CAS  Google Scholar 

  53. Weng S, Lauven M, Schaefer T, Polontchouk L, Grover R, Dhein S (2002) Pharmacological modification of gap junction coupling by an antiarrhythmic peptide via protein kinase C activation. FASEB J 16:1114–1116

    PubMed  CAS  Google Scholar 

  54. Winks JS, Hughes S, Filippov AK, Tatulian L, Abogadie FC, Brown DA, Marsh SJ (2005) Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci 25:3400–3413

    Article  PubMed  CAS  Google Scholar 

  55. Wu J, McHowat J, Saffitz JE, Yamada KA, Corr PB (1993) Inhibition of gap junctional conductance by long-chain acylcarnitines and their preferential accumulation in junctional sarcolemma during hypoxia. Circ Res 72:879–889

    PubMed  CAS  Google Scholar 

  56. Yamamoto M, Chen MZ, Wang YJ, Sun HQ, Wei Y, Martinez M, Yin HL (2006) Hypertonic stress increases phosphatidylinositol 4,5-bisphosphate levels by activating PIP5KIbeta. J Biol Chem 281:32630–32638

    Article  PubMed  CAS  Google Scholar 

  57. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1:183–188

    Article  PubMed  CAS  Google Scholar 

  58. Ziegelhoffer A, Tappia PS, Mesaeli N, Sahi N, Dhalla NS, Panagia V (2001) Low level of sarcolemmal phosphatidylinositol 4,5-bisphosphate in cardiomyopathic hamster (UM-X7.1) heart. Cardiovasc Res 49:118–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Professor Donald Marsh for valuable suggestions and comments to the manuscript. Ninna Buch Petersen and Trine Eidsvoll are thanked for excellent technical assistance.

Grants

This work was supported by: The Danish National Research Foundation; The John and Birthe Meyer Foundation; The Danish Natural and Health Sciences Research Councils; The Velux Foundation; The Danish Heart Association; The Novo Nordisk Foundation; The A.P. Møller Foundation.

Disclosures

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Schak Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofgaard, J.P., Banach, K., Mollerup, S. et al. Phosphatidylinositol-bisphosphate regulates intercellular coupling in cardiac myocytes. Pflugers Arch - Eur J Physiol 457, 303–313 (2008). https://doi.org/10.1007/s00424-008-0538-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0538-x

Keywords

Navigation