Skip to main content

Advertisement

Log in

Reciprocal modulation of I h and I TASK in thalamocortical relay neurons by halothane

  • Cellular Neurophysiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

By combining electrophysiological, immunohistochemical, and computer modeling techniques, we examined the effects of halothane on the standing outward current (I SO) and the hyperpolarization-activated current (I h) in rat thalamocortical relay (TC) neurons of the dorsal lateral geniculate nucleus (dLGN). Hyperpolarizing voltage steps elicited an instantaneous current component (I i) followed by a slower time-dependent current that represented I h. Halothane reduced I h by shifting the voltage dependency of activation toward more negative potentials and by reducing the maximal conductance. Moreover, halothane augmented I i and I SO. During the blockade of I h through Cs+, the current–voltage relationship of the halothane-sensitive current closely resembled the properties of a current through members of the TWIK-related acid-sensitive K+ (TASK) channel family (I TASK). Computer simulations in a single-compartment TC neuron model demonstrated that the modulation of I h and I TASK is sufficient to explain the halothane-induced hyperpolarization of the membrane potential observed in current clamp recordings. Immunohistochemical staining revealed protein expression of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel proteins HCN1, HCN2, and HCN4. Together with the dual effect of halothane on I h properties, these results suggest that I h in TC neurons critically depends on HCN1/HCN2 heterodimers. It is concluded that the reciprocal modulation of I h and I TASK is an important mechanism of halothane action in the thalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altomare C, Terragni B, Brioschi C, Milanesi R, Pagliuca C, Viscomi C, Moroni A, Baruscotti M, DiFrancesco D (2003) Heteromeric HCN1–HCN4 channels: a comparison with native pacemaker channels from the rabbit sinoatrial node. J Physiol (Lond) 549:347–359

    Article  CAS  Google Scholar 

  2. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep–wake regulation. Prog Neurobiol 73:379–396

    Article  PubMed  CAS  Google Scholar 

  3. Budde T, Biella G, Munsch T, Pape H-C (1997) Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurons. J Physiol (Lond) 503.1:79–85

    Article  Google Scholar 

  4. Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape HC (2005) Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci 25:9871–9882

    Article  PubMed  CAS  Google Scholar 

  5. Campagna JA, Miller KW, Forman SA (2003) Mechanisms of actions of inhaled anesthetics. N Engl J Med 348:2110–2124

    Article  PubMed  CAS  Google Scholar 

  6. Chen X, Sirois JE, Lei Q, Talley EM, Lynch C III, Bayliss DA (2005) HCN subunit-specific and cAMP-modulated effects of anesthetics on neuronal pacemaker currents. J Neurosci 25:5803–5814

    Article  PubMed  CAS  Google Scholar 

  7. Day M, Carr DB, Ulrich S, Ilijic E, Tkatch T, Surmeier DJ (2005) Dendritic excitability of mouse frontal cortex pyramidal neurons is shaped by the interaction among HCN, Kir2, and Kleak channels. J Neurosci 25:8776–8787

    Article  PubMed  CAS  Google Scholar 

  8. Detsch O, Kochs E, Siemers M, Bromm B, Vahle-Hinz C (2002) Differential effects of isoflurane on excitatory and inhibitory synaptic inputs to thalamic neurones in vivo. Br J Anaesth 89:294–300

    Article  PubMed  CAS  Google Scholar 

  9. Dilger JP, Vidal AM, Mody AI, Liu Y (1994) Evidence for direct actions of general anesthetics on an ion channel protein. A new look at a unified mechanism of action. Anesthesiology 81:431–442

    Article  PubMed  CAS  Google Scholar 

  10. Fanselow EE, Sameshima K, Baccala LA, Nicolelis MA (2001) Thalamic bursting in rats during different awake behavioral states. Proc Natl Acad Sci U S A 98:15330–15335

    Article  PubMed  CAS  Google Scholar 

  11. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anaethesia. Nature 367:607–614

    Article  PubMed  CAS  Google Scholar 

  12. Franks NP, Lieb WR (1998) Which molecular targets are most relevant to general anaesthesia? Toxicol Lett 100–101:1–8

    Article  PubMed  Google Scholar 

  13. Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K(+) channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695

    Article  PubMed  CAS  Google Scholar 

  14. Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123–135

    Article  PubMed  CAS  Google Scholar 

  15. Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261

    Article  PubMed  CAS  Google Scholar 

  16. Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383

    PubMed  CAS  Google Scholar 

  17. Jones MV, Harrison NL (1993) Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol 70:1339–1349

    PubMed  CAS  Google Scholar 

  18. Linden A-M, Aller MI, Leppa E, Vekovischeva O, Aitta-aho T, Veale EL, Mathie A, Rosenberg P, Wisden W, Korpi ER (2006) The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the {alpha}2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther 317:615–626

    Article  PubMed  CAS  Google Scholar 

  19. Linden A-M, Sandu C, Aller MI, Vekovischeva OY, Rosenberg PH, Wisden W, Korpi ER (2007) TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J Pharmacol Exp Ther 323:924–934

    Article  PubMed  CAS  Google Scholar 

  20. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224

    Article  PubMed  CAS  Google Scholar 

  21. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Article  PubMed  CAS  Google Scholar 

  22. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

    Article  PubMed  CAS  Google Scholar 

  23. McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384–1400

    PubMed  CAS  Google Scholar 

  24. McCormick DA, Pape H-C (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol (Lond) 431:291–318

    CAS  Google Scholar 

  25. Meuth P, Meuth SG, Jacobi D, Broicher T, Pape HC, Budde T (2005) Get the rhythm: modeling of neuronal activity. Journal of Undergraduate Neuroscience Education 4(1):A1–A11

    Google Scholar 

  26. Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Kleinschnitz C, Pape HC, Wiendl H, Wisden W, Budde T (2006a) The contribution of TASK-1-containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Mol Pharmacol 69:1468–1476

    Article  PubMed  CAS  Google Scholar 

  27. Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape H-C (2003) Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 23:6460–6469

    PubMed  CAS  Google Scholar 

  28. Meuth SG, Kanyshkova T, Meuth P, Landgraf P, Munsch T, Ludwig A, Hofmann F, Pape HC, Budde T (2006b) The membrane resting potential of thalamocortical relay neurons is shaped by the interaction among TASK3 and HCN2 channels. J Neurophysiol 96:1517–1529

    Article  PubMed  CAS  Google Scholar 

  29. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, Mascia MP, Valenzuela CF, Hanson KK, Greenblatt EP, Harris RA, Harrison NL (1997) Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389:385–389

    Article  PubMed  CAS  Google Scholar 

  30. Mikulec AA, Pittson S, Amagasu SM, Monroe FA, MacIver MB (1998) Halothane depresses action potential conduction in hippocampal axons. Brain Res 796:231–238

    Article  PubMed  CAS  Google Scholar 

  31. Monteggia LM, Eisch AJ, Tang MD, Kaczmarek LK, Nestler EJ (2000) Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. Brain Res Mol Brain Res 81:129–139

    Article  PubMed  CAS  Google Scholar 

  32. Much B, Wahl-Schott C, Zong X, Schneider A, Baumann L, Moosmang S, Ludwig A, Biel M (2003) Role of subunit heteromerization and N-linked glycosylation in the formation of functional hyperpolarization-activated cyclic nucleotide-gated channels. J Biol Chem 278:43781–43786

    Article  PubMed  CAS  Google Scholar 

  33. Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP, Maze M (2002) The sedative component of anesthesia is mediated by GABAA receptors in an endogenous sleep pathway. Nat Neurosci 5:979–984

    Article  PubMed  CAS  Google Scholar 

  34. Pape H-C (1992) Adenosine promotes burst activity in guinea-pig geniculocortical neurones through two different ionic mechanisms. J Physiol (Lond) 447:729–753

    CAS  Google Scholar 

  35. Pape H-C (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  PubMed  CAS  Google Scholar 

  36. Pape HC, Kanyshkova T, Broicher T, Budde T (2007) Developmental and functional profile of the thalamic hyperpolarization-activated cation current, I h, in absence epilepsy. Thalamus & Related Systems DOI 10.1017/S1472928807000180

  37. Patel A, Lazdunski M (2004) The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 448:261–273

    Article  PubMed  CAS  Google Scholar 

  38. Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  PubMed  CAS  Google Scholar 

  39. Pearce RA (1996) Volatile anaesthetic enhancement of paired-pulse depression investigated in the rat hippocampus in vitro. J Physiol (Lond) 492:823–840

    CAS  Google Scholar 

  40. Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6:321–332

    Article  PubMed  Google Scholar 

  41. Rajan S, Wischmeyer E, Karschin C, Preisig-Muller R, Grzeschik K-H, Daut J, Karschin A, Derst C (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276:7302–7311

    Article  PubMed  CAS  Google Scholar 

  42. Ries CR, Puil E (1999a) Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81:1795–1801

    PubMed  CAS  Google Scholar 

  43. Ries CR, Puil E (1999b) Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81:1802–1809

    PubMed  CAS  Google Scholar 

  44. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB (1999) Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci U S A 96:9391–9396

    Article  PubMed  CAS  Google Scholar 

  45. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367–1395

    PubMed  CAS  Google Scholar 

  46. Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic Press, San Diego

    Google Scholar 

  47. Sirois JE, Lei Q, Talley EM, Lynch C 3rd, Bayliss DA (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalation anesthetics. J Neurosci 20:6347–6354

    PubMed  CAS  Google Scholar 

  48. Sirois JE, Lynch C 3rd, Bayliss DA (2002) Convergent and reciprocal modulation of a leak K+ current and I h by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J Physiol (Lond) 541:717–729

    Article  CAS  Google Scholar 

  49. Steriade M (1997) Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb Cortex 7:583–604

    Article  PubMed  CAS  Google Scholar 

  50. Steriade M, Jones EG, McCormick DA (1997) Thalamus. Elsevier, Amsterdam

    Google Scholar 

  51. Sugiyama K, Muteki T, Shimoji K (1992) Halothane-induced hyperpolarization and depression of postsynaptic potentials of guinea pig thalamic neurons in vitro. Brain Res 576:97–103

    Article  PubMed  CAS  Google Scholar 

  52. Talley EM, Bayliss DA (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels. Volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277:17733–17742

    Article  PubMed  CAS  Google Scholar 

  53. Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    PubMed  CAS  Google Scholar 

  54. Triner L, Vulliemoz Y, Woo S-Y, Verosky M (1980) Halothane effect on cAMP generation and hydrolysis in rat brain. Eur J Pharmacol 66:73–80

    Article  PubMed  CAS  Google Scholar 

  55. Trudell JR, Bertaccini E (2002) Molecular modelling of specific and non-specific anaesthetic interactions. Br J Anaesth 89:32–40

    Article  PubMed  CAS  Google Scholar 

  56. Tung A, Mendelson WB (2004) Anesthesia and sleep. Sleep Med Rev 8:213–225

    Article  PubMed  Google Scholar 

  57. Vahle-Hinz C, Detsch O, Siemers M, Kochs E (2007) Contributions of GABAergic and glutamatergic mechanisms to isoflurane-induced suppression of thalamic somatosensory information transfer. Exp Brain Res 176:159–172

    Article  PubMed  CAS  Google Scholar 

  58. Weyand TG, Boudreaux M, Guido W (2001) Burst and tonic response modes in thalamic neurons during sleep and wakefulness. J Neurophysiol 85:1107–1118

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank E. Naß and A. Jahn for the excellent technical assistance. We also wish to thank Prof. J. Andersson for his kind help with the gas chromatography and Prof. E. Pogatzki-Zahn for kindly providing the sevoflurane. This study was supported by DFG (BU 1019/7-1; Pa 336/17-1), Innovative Medizinische Forschung (IMF; BU 120501), and Interdisziplinäres Zentrum für Klinische Forschung (IZKF; Bud/005/07 to TB; A-54 to SGM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Budde.

Additional information

Thomas Budde and Philippe Coulon are equally contributing first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budde, T., Coulon, P., Pawlowski, M. et al. Reciprocal modulation of I h and I TASK in thalamocortical relay neurons by halothane. Pflugers Arch - Eur J Physiol 456, 1061–1073 (2008). https://doi.org/10.1007/s00424-008-0482-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0482-9

Keywords

Navigation