Skip to main content

Advertisement

Log in

Activation of cell migration with fibroblast growth factor-2 requires calcium-sensitive potassium channels

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Tumor cell migration is crucial for the formation of tumor metastases and the progression of tumor disease. Fibroblast growth factor-2 (FGF-2) is one of the cytokines involved in the autocrine stimulation of tumor development. FGF-2 also stimulates transcription of Ca2+-sensitive K+ channels (IK1 or KCa3.1), which are part of the migration machinery in many cell types. Here, we tested whether FGF-2 acutely stimulates migration of transformed MDCK cells in a KCa3.1 channel-dependent way. FGF-2 accelerates migration dose dependently. The speed of migration increases almost instantaneously. After 2 min, ERK1/2 phosphorylation has almost doubled. FGF-2 does not stimulate migration when ERK1/2 phosphorylation is inhibited. KCa3.1 channel blockade also prevents the stimulatory effect of FGF-2 on cell migration. In addition, FGF-2 treatment leads to an activation of KCa3.1 channels and a rapid rise of the cell area, which is because of an elevated rate of exocytosis. However, the amount of KCa3.1 channels within the plasma membrane does not change. Our results show that there is a reciprocal interrelation between FGF-2 and KCa3.1 channels. KCa3.1 channels that are under the transcriptional control of FGF-2 are part of the FGF-2-mediated signaling cascade leading to an acceleration of migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aguado-Velasco C, Bretscher MS (1999) Circulation of the plasma membrane in Dictyostelium. Mol Biol Cell 10:4419–4427

    PubMed  CAS  Google Scholar 

  2. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549–554

    Article  PubMed  CAS  Google Scholar 

  3. Bianchini L, L’Allemain G, Pouyssegur J (1997) The p42/p44 mitogen-activated protein kinase cascade is determinant in mediating activation of the Na+/H+ exchanger (NHE1 isoform) in response to growth factors. J Biol Chem 272:271–279

    Article  PubMed  CAS  Google Scholar 

  4. Bikfalvi A, Klein S, Pintucci G, Rifkin DB (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26–45

    Article  PubMed  CAS  Google Scholar 

  5. Brakebusch C, Fassler R (2003) The integrin-actin connection, an eternal love affair. EMBO J 22:2324–2333

    Article  PubMed  CAS  Google Scholar 

  6. Bray D (2001) Cell movements—from molecules to motility. Garland, New York

    Google Scholar 

  7. Cruse G, Duffy SM, Brightling CE, Bradding P (2006) Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 61:880–885

    Article  PubMed  CAS  Google Scholar 

  8. Ding Y, Brackenbury WJ, Onganer PU, Montano X, Porter LM, Bates LF, Djamgoz MB (2007) Epidermal growth factor upregulates motility of Mat-LyLu rat prostate cancer cells partially via voltage-gated Na+ channel activity. J Cell Physiol. DOI 10.1002/jcp.21289

  9. Duffy SM, Cruse G, Brightling CE, Bradding P (2007) Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor. Eur J Immunol 37:1653–1662

    Article  PubMed  CAS  Google Scholar 

  10. Fera E, O’Neil C, Lee W, Li S, Pickering JG (2004) Fibroblast growth factor-2 and remodeled type I collagen control membrane protrusion in human vascular smooth muscle cells: biphasic activation of Rac1. J Biol Chem 279:35573–35582

    Article  PubMed  CAS  Google Scholar 

  11. Gomez-Varela D, Zwick-Wallasch E, Knotgen H, Sanchez A, Hettmann T, Ossipov D, Weseloh R, Contreras-Jurado C, Rothe M, Stuhmer W, Pardo LA (2007) Monoclonal antibody blockade of the human Eag1 potassium channel function exerts antitumor activity. Cancer Res 67:7343–7349

    Article  PubMed  CAS  Google Scholar 

  12. Granato AM, Frassineti GL, Giovannini N, Ballardini M, Nanni O, Maltoni R, Amadori D, Volpi A (2006) Do serum angiogenic growth factors provide additional information to that of conventional markers in monitoring the course of metastatic breast cancer? Tumour Biol 27:302–308

    Article  PubMed  CAS  Google Scholar 

  13. Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, Köhler R (2005) Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 25:704–709

    Article  PubMed  CAS  Google Scholar 

  14. Guerrin M, Scotet E, Malecaze F, Houssaint E, Plouet J (1997) Overexpression of vascular endothelial growth factor induces cell transformation in cooperation with fibroblast growth factor 2. Oncogene 14:463–471

    Article  PubMed  CAS  Google Scholar 

  15. Hanley PJ, Musset B, Renigunta V, Limberg SH, Dalpke AH, Sus R, Heeg KM, Preisig-Muller R, Daut J (2004) Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages. Proc Natl Acad Sci U S A 101:9479–9484

    Article  PubMed  CAS  Google Scholar 

  16. Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S (2004) Blockage of intermediate-conductance Ca2+-activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 65:630–638

    Article  PubMed  Google Scholar 

  17. Klein M, Seeger P, Schuricht B, Alper SL, Schwab A (2000) Polarization of Na+/H+ and Cl/HCO3 exchangers in migrating renal epithelial cells. J Gen Physiol 115:599–608

    Article  PubMed  CAS  Google Scholar 

  18. Köhler R, Degenhardt C, Kuhn M, Runkel N, Paul M, Hoyer J (2000) Expression and function of endothelial Ca2+-activated K+ channels in human mesenteric artery: a single-cell reverse transcriptase-polymerase chain reaction and electrophysiological study in situ. Circ Res 87:496–503

    PubMed  Google Scholar 

  19. Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kampfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108:1119–1125

    Article  PubMed  CAS  Google Scholar 

  20. Kwabi-Addo B, Ozen M, Ittmann M (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11:709–724

    Article  PubMed  CAS  Google Scholar 

  21. Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noël J (2000) Regulation of the formation of tumor cell pseudopodia by the Na+/H+ exchanger NHE1. J Cell Sci 113:3649–3662

    PubMed  CAS  Google Scholar 

  22. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369

    Article  PubMed  CAS  Google Scholar 

  23. Migdal M, Soker S, Yarden Y, Neufeld G (1995) Activation of a transfected FGFR-1 receptor in Madin–Darby epithelial cells results in a reversible loss of epithelial properties. J Cell Physiol 162:266–276

    Article  PubMed  CAS  Google Scholar 

  24. Montesano R, Soriano JV, Hosseini G, Pepper MS, Schramek H (1999) Constitutively active mitogen-activated protein kinase kinase MEK1 disrupts morphogenesis and induces an invasive phenotype in Madin–Darby canine kidney epithelial cells. Cell Growth Differ 10:317–332

    PubMed  CAS  Google Scholar 

  25. Nechyporuk-Zloy V, Stock C, Schillers H, Oberleithner H, Schwab A (2006) Single plasma membrane K+ channel detection by using dual-color quantum dot labeling. Am J Physiol Cell Physiol 291:C266–269

    Article  PubMed  CAS  Google Scholar 

  26. Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 86:356–361

    Article  PubMed  CAS  Google Scholar 

  27. Numakawa T, Yokomaku D, Kiyosue K, Adachi N, Matsumoto T, Numakawa Y, Taguchi T, Hatanaka H, Yamada M (2002) Basic fibroblast growth factor evokes a rapid glutamate release through activation of the MAPK pathway in cultured cortical neurons. J Biol Chem 277:28861–28869

    Article  PubMed  CAS  Google Scholar 

  28. Oberleithner H, Westphale HJ, Gassner B (1991) Alkaline stress transforms Madin–Darby canine kidney cells. Pflügers Arch 419:418–420

    Article  PubMed  CAS  Google Scholar 

  29. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292–15297

    Article  PubMed  CAS  Google Scholar 

  30. Ouadid-Ahidouch H, Roudbaraki M, Delcourt P, Ahidouch A, Joury N, Prevarskaya N (2004) Functional and molecular identification of intermediate-conductance Ca2+-activated K+ channels in breast cancer cells: association with cell cycle progression. Am J Physiol Cell Physiol 287:C125–134

    Article  PubMed  CAS  Google Scholar 

  31. Pena TL, Chen SH, Konieczny SF, Rane SG (2000) Ras/MEK/ERK Up-regulation of the fibroblast KCa channel FIK is a common mechanism for basic fibroblast growth factor and transforming growth factor-beta suppression of myogenesis. J Biol Chem 275:13677–13682

    Article  PubMed  CAS  Google Scholar 

  32. Pillozzi S, Brizzi MF, Bernabei PA, Bartolozzi B, Caporale R, Basile V, Boddi V, Pegoraro L, Becchetti A, Arcangeli A (2007) VEGFR-1 (FLT-1), beta1 integrin, and hERG K+ channel for a macromolecular signaling complex in acute myeloid leukemia: role in cell migration and clinical outcome. Blood 110:1238–1250

    Article  PubMed  CAS  Google Scholar 

  33. Pintucci G, Moscatelli D, Saponara F, Biernacki PR, Baumann FG, Bizekis C, Galloway AC, Basilico C, Mignatti P (2002) Lack of ERK activation and cell migration in FGF-2-deficient endothelial cells. FASEB J 16:598–600

    PubMed  CAS  Google Scholar 

  34. Powers CJ, McLeskey SW, Wellstein A (2000) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7:165–197

    Article  PubMed  CAS  Google Scholar 

  35. Pullikuth AK, Catling AD (2007) Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: a perspective. Cell Signal 19:1621–1632

    Article  PubMed  CAS  Google Scholar 

  36. Rafelski SM, Theriot JA (2004) Crawling toward a unified model of cell mobility: spatial and temporal regulation of actin dynamics. Annu Rev Biochem 73:209–239

    Article  PubMed  CAS  Google Scholar 

  37. Ransom CB, O’Neal JT, Sontheimer H (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21:7674–7683

    PubMed  CAS  Google Scholar 

  38. Rotsch C, Jacobson K, Condeelis J, Radmacher M (2001) EGF-stimulated lamellipod extension in adenocarcinoma cells. Ultramicroscopy 86:97–106

    Article  PubMed  CAS  Google Scholar 

  39. Schilling T, Stock C, Schwab A, Eder C (2004) Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur J Neurosci 19:1469–1474

    Article  PubMed  Google Scholar 

  40. Schneider L, Klausen TK, Stock C, Mally S, Christensen ST, Pedersen SF, Hoffmann EK, Schwab A (2007) H-ras transformation sensitizes volume-activated anion channels and increases migratory activity of NIH3T3 fibroblasts. Pflügers Arch. DOI 10.1007/s00424-007-0367-3

  41. Schwab A, Nechyporuk-Zloy V, Fabian A, Stock C (2007) Cells move when ions and water flow. Pflügers Arch 453:421–432

    Article  PubMed  CAS  Google Scholar 

  42. Schwab A, Reinhardt J, Schneider SW, Gassner B, Schuricht B (1999) K+ channel-dependent migration of fibroblasts and human melanoma cells. Cell Physiol Biochem 9:126–132

    Google Scholar 

  43. Schwab A, Schuricht B, Seeger P, Reinhardt J, Dartsch PC (1999) Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. Pflügers Arch 438:330–337

    Article  PubMed  CAS  Google Scholar 

  44. Schwab A, Wulf A, Schulz C, Kessler W, Nechyporuk-Zloy V, Römer M, Reinhardt J, Weinhold D, Dieterich P, Stock C, Hebert SC (2006) Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol 206:86–94

    Article  PubMed  CAS  Google Scholar 

  45. Srivastava S, Choudhury P, Li Z, Liu G, Nadkarni V, Ko K, Coetzee WA, Skolnik EY (2006) Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1. Mol Biol Cell 17:146–154

    Article  PubMed  CAS  Google Scholar 

  46. Stock C, Schwab A (2006) Role of the Na/H exchanger NHE1 in cell migration. Acta Physiol (Oxf) 187:149–157

    CAS  Google Scholar 

  47. Stupack DG, Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64:207–238

    Article  PubMed  CAS  Google Scholar 

  48. Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2:301–314

    Article  PubMed  CAS  Google Scholar 

  49. Tajima N, Schonherr K, Niedling S, Kaatz M, Kanno H, Schönherr R, Heinemann SH (2006) Ca2+-activated K+ channels in human melanoma cells are up-regulated by hypoxia involving hypoxia-inducible factor-1alpha and the von Hippel-Lindau protein. J Physiol 571:349–359

    Article  PubMed  CAS  Google Scholar 

  50. Versteeg HH, Nijhuis E, van den Brink GR, Evertzen M, Pynaert GN, van Deventer SJ, Coffer PJ, Peppelenbosch MP (2000) A new phosphospecific cell-based ELISA for p42/p44 mitogen-activated protein kinase (MAPK), p38 MAPK, protein kinase B and cAMP-response-element-binding protein. Biochem J 350(Pt 3):717–722

    Article  PubMed  CAS  Google Scholar 

  51. Wang H, Silva NL, Lucchesi PA, Haworth R, Wang K, Michalak M, Pelech S, Fliegel L (1997) Phosphorylation and regulation of the Na+/H+ exchanger through mitogen-activated protein kinase. Biochemistry 36:9151–9158

    Article  PubMed  CAS  Google Scholar 

  52. Wulff H, Knaus HG, Pennington M, Chandy KG (2004) K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173:776–786

    PubMed  CAS  Google Scholar 

  53. Xu D, Wang L, Dai W, Lu L (1999) A requirement for K+-channel activity in growth factor-mediated extracellular signal-regulated kinase activation in human myeloblastic leukemia ML-1 cells. Blood 94:139–145

    PubMed  CAS  Google Scholar 

  54. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17:559–564

    Article  PubMed  CAS  Google Scholar 

  55. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, McCaig CD, Penninger JM (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442:457–460

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The expert technical assistance of Birgit Gassner, Sabine Mally, and Elke Naß is gratefully acknowledged. This work was supported by grants from the Deutsche Forschungsgemeinschaft to A. S. and T. B. (Schw 407/9-3 and 407/10-1; BU 1019/7-1) and from the Rolf-Dierich-Stiftung to A.F. EIPA was a gift from Dr. H. J. Lang, Sanofi-Aventis, and clotrimazol was a gift from Dr. F. Mauler, Bayer AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht Schwab.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Movie 1

This movie shows the acute effect of FGF-2 (5 ng/ml) on migration of the MDCK-F cell shown in Fig. 2. The first part of the movie displays the movement of the MDCK-F cell under control conditions. At its end, a few black frames indicate the time point of the application of FGF-2. The width of the x axis amounts to ∼60 μm. Time interval is 10 s; 1 s of the movie corresponds to 5 min in real time. (MOV 4.74 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, W., Budde, T., Gekle, M. et al. Activation of cell migration with fibroblast growth factor-2 requires calcium-sensitive potassium channels. Pflugers Arch - Eur J Physiol 456, 813–823 (2008). https://doi.org/10.1007/s00424-008-0452-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0452-2

Keywords

Navigation