Skip to main content

Advertisement

Log in

The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Trafficking of the intracellular vesicles and membrane protein incorporated in the vesicles is essential for a variety of basic biological processes. Growing evidence has highlighted the importance of the actin cytoskeleton in the trafficking of synaptic vesicles, secretory granules, transporters, and channels including aquaporin. These trafficking processes require actin remodeling, which is spatiotemporally regulated. Recent researches have come to focus on the motility mechanism of the translocation. In this review, we describe the role of actin at each step of intracellular reservation, exocytosis, docking, fusion with the plasma membrane, and endocytosis, focusing on aquaporin-2 trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ameen N, Apodaca G (2007) Defective CFTR apical endocytosis and enterocyte brush border in myosin VI-deficient mice. Traffic 8(8):998–1006

    PubMed  CAS  Google Scholar 

  2. Aunis D, Bader MF (1988) The cytoskeleton as a barrier to exocytosis in secretory cells. J Exp Biol 139:253–266

    PubMed  CAS  Google Scholar 

  3. Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S (2004) Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochim Biophys Acta 1742:37–49

    PubMed  CAS  Google Scholar 

  4. Bloom O, Evergren E, Tomilin N, Kjaerulff O, Löw P, Brodin L, Pieribone VA, Greengard P, Shupliakov O (2003) Colocalization of synapsin and actin during synaptic vesicle recycling. J Cell Biol 161(4):737–747

    PubMed  CAS  Google Scholar 

  5. Bose A, Guilherme A, Robida SI, Nicoloro SM, Zhou QL, Jiang ZY, Pomerleau DP, Czech MP (2002) Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420(6917):821–824

    PubMed  CAS  Google Scholar 

  6. Carbajal ME, Vitale ML (1997) The cortical actin cytoskeleton of lactotropes as an intracellular target for the control of prolactin secretion. Endocrinology 138(12):5374–5384

    PubMed  CAS  Google Scholar 

  7. Chou CL, Christensen BM, Frische S, Vorum H, Desai RA, Hoffert JD, de Lanerolle P, Nielsen S, Knepper MA (2004) Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem 279(47):49026–49035

    PubMed  CAS  Google Scholar 

  8. Chowdhury HH, Popoff MR, Zorec R (1999) Actin cytoskeleton depolymerization with clostridium spiroforme toxin enhances the secretory activity of rat melanotrophs. J Physiol 521(2):389–395

    PubMed  CAS  Google Scholar 

  9. Chowdhury HH, Popoff MR, Zorec R (2000) Actin cytoskeleton and exocytosis in rat melanotrophs. Pflugers Arch 439(3):R148–R149

    Article  PubMed  CAS  Google Scholar 

  10. Daly RJ (2004) Cortactin signalling and dynamic actin networks. Biochem J 382(1):13–25

    PubMed  CAS  Google Scholar 

  11. Desnos C, Schonn JS, Huet S, Tran VS, El-Amraoui A, Raposo G, Fanget I, Chapuis C, Ménasché G, de Saint Basile G, Petit C, Cribier S, Henry JP, Darchen F (2003) Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J Cell Biol 163(3):559–570

    PubMed  CAS  Google Scholar 

  12. Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55

    PubMed  CAS  Google Scholar 

  13. Doussau F, Gasman S, Humeau Y, Vitiello F, Popoff M, Boquet P, Bader MF, Poulain B (2000) A Rho-related GTPase is involved in Ca(2)-dependent neurotransmitter exocytosis. J Biol Chem 275(11):7764–7770

    PubMed  CAS  Google Scholar 

  14. Dumitrescu Pene T, Rosé SD, Lejen T, Marcu MG, Trifaró JM (2005) Expression of various scinderin domains in chromaffin cells indicates that this protein acts as a molecular switch in the control of actin filament dynamics and exocytosis. J Neurochem 92(4):780–789

    PubMed  Google Scholar 

  15. Dunaevsky A, Connor EA (2000) F-actin is concentrated in nonrelease domains at frog neuromuscular junctions. J Neurosci 20(16):6007–6012

    PubMed  CAS  Google Scholar 

  16. Ehre C, Rossi AH, Abdullah LH, De Pestel K, Hill S, Olsen JC, Davis CW (2005) Barrier role of actin filaments in regulated mucin secretion from airway goblet cells. Am J Physiol Cell Physiol 288(1):C46–C56

    PubMed  CAS  Google Scholar 

  17. Ehrlich M, Boll W, Van Oijen A, Hariharan R, Chandran K, Nibert ML, Kirchhausen T (2004) Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118(5):591–605

    PubMed  CAS  Google Scholar 

  18. Eichler TW, Kögel T, Bukoreshtliev NV, Gerdes HH (2006) The role of myosin Va in secretory granule trafficking and exocytosis. Biochem Soc Trans 34(5):671–674

    PubMed  CAS  Google Scholar 

  19. Eitzen G, Wang L, Thorngren N, Wickner W (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158(4):669–679

    PubMed  CAS  Google Scholar 

  20. Franki N, Ding G, Gao Y, Hays RM (1992) Effect of cytochalasin D on the actin cytoskeleton of the toad bladder epithelial cell. Am J Physiol 263(5):C995–C1000

    PubMed  CAS  Google Scholar 

  21. Frantz C, Coppola T, Regazzi R (2002) Involvement of Rho GTPases and their effectors in the secretory process of PC12 cells. Exp Cell Res 273(2):119–126

    PubMed  CAS  Google Scholar 

  22. Gasman S, Chasserot-Golaz S, Popoff MR, Aunis D, Bader MF (1997) Trimeric G proteins control exocytosis in chromaffin cells. Go regulates the peripheral actin network and catecholamine secretion by a mechanism involving the small GTP-binding protein Rho. J Biol Chem 272(33):20564–20571

    PubMed  CAS  Google Scholar 

  23. Gasman S, Chasserot-Golaz S, Hubert P, Aunis D, Bader MF (1998) Identification of a potential effector pathway for the trimeric Go protein associated with secretory granules. Go stimulates a granule-bound phosphatidylinositol 4-kinase by activating RhoA in chromaffin cells. J Biol Chem 273(27):16913–16920

    PubMed  CAS  Google Scholar 

  24. Gasman S, Chasserot-Golaz S, Malacombe M, Way M, Bader MF (2004) Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments. Mol Biol Cell 15(2):520–531

    PubMed  CAS  Google Scholar 

  25. Gil A, Rueda J, Viniegra S, Gutiérrez LM (2000) The F-actin cytoskeleton modulates slow secretory components rather than readily releasable vesicle pools in bovine chromaffin cells. Neuroscience 98(3):605–614

    PubMed  CAS  Google Scholar 

  26. Giner D, Neco P, Francés Mdel M, López I, Viniegra S, Gutiérrez LM (2005) Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. J Cell Sci 118(13):2871–2880

    PubMed  CAS  Google Scholar 

  27. Gutierrez LM, Hidalgo MJ, Palmero M, Ballesta JJ, Reig JA, Garcia AG, Viniegra S (1989) Phosphorylation of myosin light chain from adrenomedullary chromaffin cells in culture. Biochem J 264(2):589–596

    PubMed  CAS  Google Scholar 

  28. Harazaki M, Kawai Y, Su L, Hamazaki Y, Nakahata T, Minato N, Hattori M (2004) Specific recruitment of SPA-1 to the immunological synapse: involvement of actin-bundling protein actinin. Immunol Lett 92(3):221–226

    PubMed  CAS  Google Scholar 

  29. Hehnly H, Stamnes M (2007) Regulating cytoskeleton-based vesicle motility. FEBS Lett 581(11):2112–2118

    PubMed  CAS  Google Scholar 

  30. Hirokawa N, Sobue K, Kanda K, Harada A, Yorifuji H (1989) The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J Cell Biol 108(1):111–126

    PubMed  CAS  Google Scholar 

  31. Hou JC, Pessin JE (2007) Ins (endocytosis) and outs (exocytosis) of GLUT4 traffic king. Curr Opin Cell Biol 19(4):466–473

    PubMed  CAS  Google Scholar 

  32. Humeau Y, Popoff MR, Kojima H, Doussau F, Poulain B (2002) Rac GTPase plays an essential role in exocytosis by controlling the fusion competence of release sites. J Neurosci 22(18):7968–7981

    PubMed  CAS  Google Scholar 

  33. Jerdeva GV, Wu K, Yarber FA, Rhodes CJ, Kalman D, Schechter JE, Hamm-Alvarez SF (2005) Actin and non-muscle myosin II facilitate apical exocytosis of tear proteins in rabbit lacrimal acinar epithelial cells. J Cell Sci 118(20):4797–4812

    PubMed  CAS  Google Scholar 

  34. Kaksonen M, Peng HB, Rauvala H (2000) Association of cortactin with dynamic actin in lamellipodia and on endosomal vesicles. J Cell Sci 113(24):4421–4426

    PubMed  CAS  Google Scholar 

  35. Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115(4):475–487

    PubMed  CAS  Google Scholar 

  36. Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123(2):305–320

    PubMed  CAS  Google Scholar 

  37. Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7(6):404–414

    PubMed  CAS  Google Scholar 

  38. Kanzaki M, Pessin JE (2001a) Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 276(45):42436–42444

    PubMed  CAS  Google Scholar 

  39. Kanzaki M, Watson RT, Khan AH, Pessin JE (2001b) Insulin stimulates actin comet tails on intracellular GLUT4-containing compartments in differentiated 3T3L1 adipocytes. J Biol Chem 276(52):49331–49336

    PubMed  CAS  Google Scholar 

  40. Kanzaki M (2006) Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocr J 53(3):267–293

    PubMed  CAS  Google Scholar 

  41. Klussmann E, Tamma G, Lorenz D, Wiesner B, Maric K, Hofmann F, Aktories K, Valenti G, Rosenthal W (2001) An inhibitory role of Rho in the vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 276(23):20451–20457

    PubMed  CAS  Google Scholar 

  42. Kometani K, Ishida D, Hattori M, Minato N (2004) Rap1 and SPA-1 in hematologic malignancy. Trends Mol Med 10(8):401–408

    PubMed  CAS  Google Scholar 

  43. Kometani K, Aoki M, Kawamata S, Shinozuka Y, Era T, Taniwaki M, Hattori M, Minato N (2006) Role of SPA-1 in phenotypes of chronic myelogenous leukemia induced by BCR-ABL-expressing hematopoietic progenitors in a mouse model. Cancer Res 66(20):9967–9976

    PubMed  CAS  Google Scholar 

  44. Krementsov DN, Krementsova EB, Trybus KM (2004) Myosin V: regulation by calcium, calmodulin, and the tail domain. J Cell Biol 164(6):877–886

    PubMed  CAS  Google Scholar 

  45. Kuromi H, Kidokoro Y (1998) Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20(5):917–925

    PubMed  CAS  Google Scholar 

  46. Landis DM, Hall AK, Weinstein LA, Reese TS (1988) The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1(3):201–209

    PubMed  CAS  Google Scholar 

  47. Lanzetti L (2007) Actin in membrane trafficking. Curr Opin Cell Biol 19(4):453–458

    PubMed  CAS  Google Scholar 

  48. Le Clainche C, Pauly BS, Zhang CX, Engqvist-Goldstein AE, Cunningham K, Drubin DG (2007) A Hip1R-cortactin complex negatively regulates actin assembly associated with endocytosis. EMBO J 26(5):1199–1210

    PubMed  Google Scholar 

  49. Li XD, Mabuchi K, Ikebe R, Ikebe M (2004) Ca2 + -induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochem Biophys Res Commun 315(3):538–545

    PubMed  CAS  Google Scholar 

  50. Li XD, Jung HS, Mabuchi K, Craig R, Ikebe M (2006) The globular tail domain of myosin Va functions as an inhibitor of the myosin Va motor. J Biol Chem 281(31):21789–21798

    PubMed  CAS  Google Scholar 

  51. Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D (2004) Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol Renal Physiol 286(2):F233–F243

    PubMed  CAS  Google Scholar 

  52. Lu HA, Sun TX, Matsuzaki T, Yi XH, Eswara J, Bouley R, McKee M, Brown D (2007) Heat shock protein 70 interacts with aquaporin-2 (AQP2) and regulates its trafficking. J Biol Chem 282(39):28721–28732

    PubMed  CAS  Google Scholar 

  53. Malacombe M, Bader MF, Gasman S (2006a) Exocytosis in neuroendocrine cells: new tasks for actin. Biochim Biophys Acta 1763(11):1175–1183

    PubMed  CAS  Google Scholar 

  54. Malacombe M, Ceridono M, Calco V, Chasserot-Golaz S, McPherson PS, Bader MF, Gasman S (2006b) Intersectin-1L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42. EMBO J 25(15):3494–3503

    PubMed  CAS  Google Scholar 

  55. Marcu MG, Rodríguez del Castillo A, Vitale ML, Trifaró JM (1994) Molecular cloning and functional expression of chromaffin cell scinderin indicates that it belongs to the family of Ca(2)-dependent F-actin severing proteins. Mol Cell Biochem 141(2):153–165

    PubMed  CAS  Google Scholar 

  56. Marcu MG, Zhang L, Nau-Staudt K, Trifaró JM (1996) Recombinant scinderin, an F-actin severing protein, increases calcium-induced release of serotonin from permeabilized platelets, an effect blocked by two scinderin-derived actin-binding peptides and phosphatidylinositol 4,5-bisphosphate. Blood 87(1):20–24

    PubMed  CAS  Google Scholar 

  57. Matter K, Dreyer F, Aktories K (1989) Actin involvement in exocytosis from PC12 cells: studies on the influence of botulinum C2 toxin on stimulated noradrenaline release. J Neurochem 52(2):370–376

    PubMed  CAS  Google Scholar 

  58. Merrifield CJ, Moss SE, Ballestrem C, Imhof BA, Giese G, Wunderlich I, Almers W (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1(1):72–74

    PubMed  CAS  Google Scholar 

  59. Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4(9):691–698

    PubMed  CAS  Google Scholar 

  60. Merrifield CJ, Qualmann B, Kessels MM, Almers W (2004) Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol 83(1):13–18

    PubMed  CAS  Google Scholar 

  61. Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121(4):593–606

    PubMed  CAS  Google Scholar 

  62. Muallem S, Kwiatkowska K, Xu X, Yin HL (1995) Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J Cell Biol 128(4):589–598

    PubMed  CAS  Google Scholar 

  63. Mulholland J, Preuss D, Moon A, Wong A, Drubin D, Botstein D (1994) Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol 125(2):381–391

    PubMed  CAS  Google Scholar 

  64. Nedvetsky PI, Stefan E, Frische S, Santamaria K, Wiesner B, Valenti G, Hammer JA 3rd, Nielsen S, Goldenring JR, Rosenthal W, Klussmann E (2007) A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic 8(2):110–123

    PubMed  CAS  Google Scholar 

  65. Nemoto T, Kojima T, Oshima A, Bito H, Kasai H (2004) Stabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini. J Biol Chem 279(36):37544–37550

    PubMed  CAS  Google Scholar 

  66. Ng YK, Lu X, Levitan ES (2002) Physical mobilization of secretory vesicles facilitates neuropeptide release by nerve growth factor-differentiated PC12 cells. J Physiol 542(2):395–402

    PubMed  CAS  Google Scholar 

  67. Noda Y, Horikawa S, Katayama Y, Sasaki S (2004a) Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun 322:740–745

    PubMed  CAS  Google Scholar 

  68. Noda Y, Horikawa S, Furukawa T, Hirai K, Katayama Y, Asai T, Kuwahara M, Katagiri K, Kinashi T, Hattori M, Minato N, Sasaki S (2004b) Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett 568:139–145

    PubMed  CAS  Google Scholar 

  69. Noda Y, Horikawa S, Katayama Y, Sasaki S (2005) Identification of a multiprotein “motor” complex binding to water channel aquaporin-2. Biochem Biophys Res Commun 330:1041–1047

    PubMed  CAS  Google Scholar 

  70. Noda Y, Sasaki S (2006) Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta 1758:1117–1125

    PubMed  CAS  Google Scholar 

  71. Norman JC, Price LS, Ridley AJ, Hall A, Koffer A (1994) Actin filament organization in activated mast cells is regulated by heterotrimeric and small GTP-binding proteins. J Cell Biol 126(4):1005–1015

    PubMed  CAS  Google Scholar 

  72. Omata W, Shibata H, Li L, Takata K, Kojima I (2000) Actin filaments play a critical role in insulin-induced exocytotic recruitment but not in endocytosis of GLUT4 in isolated rat adipocytes. Biochem J 346(2):321–328

    PubMed  CAS  Google Scholar 

  73. Orci L, Gabbay KH, Malaisse WJ (1972) Pancreatic beta-cell web: its possible role in insulin secretion. Science 175(26):1128–1130

    PubMed  CAS  Google Scholar 

  74. Orth JD, Krueger EW, Cao H, McNiven MA (2002) The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc Natl Acad Sci U S A 99(1):167–172

    PubMed  CAS  Google Scholar 

  75. Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M (2001) Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31(2):289–303

    PubMed  CAS  Google Scholar 

  76. Pashkova N, Catlett NL, Novak JL, Wu G, Lu R, Cohen RE, Weisman LS (2005) Myosin V attachment to cargo requires the tight association of two functional subdomains. J Cell Biol 168(3):359–364

    PubMed  CAS  Google Scholar 

  77. Pashkova N, Jin Y, Ramaswamy S, Weisman LS (2006) Structural basis for myosin V discrimination between distinct cargoes. EMBO J 25(4):693–700

    PubMed  CAS  Google Scholar 

  78. Patki V, Buxton J, Chawla A, Lifshitz L, Fogarty K, Carrington W, Tuft R, Corvera S (2001) Insulin action on GLUT4 traffic visualized in single 3T3-l1 adipocytes by using ultra-fast microscopy. Mol Biol Cell 12(1):129–141

    PubMed  CAS  Google Scholar 

  79. Pendleton A, Koffer A (2001) Effects of latrunculin reveal requirements for the actin cytoskeleton during secretion from mast cells. Cell Motil Cytoskelet 48(1):37–51

    CAS  Google Scholar 

  80. Puthenveedu MA, von Zastrow M (2006) Cargo regulates clathrin-coated pit dynamics. Cell 127(1):113–124

    PubMed  CAS  Google Scholar 

  81. Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, Meyer T (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100(2):221–228

    PubMed  CAS  Google Scholar 

  82. Reed BC, Cefalu C, Bellaire BH, Cardelli JA, Louis T, Salamon J, Bloecher MA, Bunn RC (2005) GLUT1CBP(TIP2/GIPC1) interactions with GLUT1 and myosin VI: evidence supporting an adapter function for GLUT1CBP. Mol Biol Cell 16(9):4183–4201

    PubMed  CAS  Google Scholar 

  83. Richards DA, Rizzoli SO, Betz WJ (2004) Effects of wortmannin and latrunculin A on slow endocytosis at the frog neuromuscular junction. J Physiol 557(1):77–91

    PubMed  CAS  Google Scholar 

  84. Rodal AA, Kozubowski L, Goode BL, Drubin DG, Hartwig JH (2005) Actin and septin ultrastructures at the budding yeast cell cortex. Mol Biol Cell 16(1):372–384

    PubMed  CAS  Google Scholar 

  85. Roux A, Uyhazi K, Frost A, De Camilli P (2006) GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441(7092):528–531

    PubMed  CAS  Google Scholar 

  86. Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10(6):311–320

    PubMed  CAS  Google Scholar 

  87. Rudolf R, Salm T, Rustom A, Gerdes HH (2001) Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 12(5):1353–1365

    PubMed  CAS  Google Scholar 

  88. Rudolf R, Kögel T, Kuznetsov SA, Salm T, Schlicker O, Hellwig A, Hammer JA 3rd, Gerdes HH (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116(7):1339–1348

    PubMed  CAS  Google Scholar 

  89. Sakaba T, Neher E (2003) Involvement of actin polymerization in vesicle recruitment at the calyx of Held synapse. J Neurosci 23(3):837–846

    PubMed  CAS  Google Scholar 

  90. Sankaranarayanan S, Atluri PP, Ryan TA (2003) Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat Neurosci 6(2):127–135

    PubMed  CAS  Google Scholar 

  91. Sechi AS, Wehland J (2000) The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane. J Cell Sci 113(21):3685–3695

    PubMed  CAS  Google Scholar 

  92. Shupliakov O, Bloom O, Gustafsson JS, Kjaerulff O, Low P, Tomilin N, Pieribone VA, Greengard P, Brodin L (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc Natl Acad Sci U S A 99(22):14476–14481

    PubMed  CAS  Google Scholar 

  93. Simon H, Gao Y, Franki N, Hays RM (1993) Vasopressin depolymerizes apical F-actin in rat inner medullary collecting duct. Am J Physiol 265:C757–C762

    PubMed  CAS  Google Scholar 

  94. Sokac AM, Co C, Taunton J, Bement W (2003) Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nat Cell Biol 5(8):727–732

    PubMed  CAS  Google Scholar 

  95. Sokac AM, Bement WM (2006) Kiss-and-coat and compartment mixing: coupling exocytosis to signal generation and local actin assembly. Mol Biol Cell 17(4):1495–1502

    PubMed  CAS  Google Scholar 

  96. Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7(12):897–908

    PubMed  CAS  Google Scholar 

  97. Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547

    PubMed  Google Scholar 

  98. Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D (2002) Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Renal Physiol 282(6):F998–F1011

    PubMed  CAS  Google Scholar 

  99. Tamma G, Klussmann E, Maric K, Aktories K, Svelto M, Rosenthal W, Valenti G (2001) Rho inhibits cAMP-induced translocation of aquaporin-2 into the apical membrane of renal cells. Am J Physiol Renal Physiol 281(6):F1092–F1101

    PubMed  CAS  Google Scholar 

  100. Tamma G, Klussmann E, Procino G, Svelto M, Rosenthal W, Valenti G (2003a) cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci 116(8):1519–1525

    PubMed  CAS  Google Scholar 

  101. Tamma G, Wiesner B, Furkert J, Hahm D, Oksche A, Schaefer M, Valenti G, Rosenthal W, Klussmann E (2003b) The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J Cell Sci 116(16):3285–3294

    PubMed  CAS  Google Scholar 

  102. Tamma G, Carmosino M, Svelto M, Valenti G (2005) Bradykinin signaling counteracts cAMP-elicited aquaporin 2 translocation in renal cells. J Am Soc Nephrol 16(10):2881–2889

    PubMed  CAS  Google Scholar 

  103. Tamma G, Klussmann E, Oehlke J, Krause E, Rosenthal W, Svelto M, Valenti G (2005) Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J Cell Sci 118(16):3623–3630

    PubMed  CAS  Google Scholar 

  104. Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, Kuwahara M, Sasaki S, Takata K (2005) Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol 124(1):1–12

    PubMed  CAS  Google Scholar 

  105. Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114(10):1801–1809

    PubMed  CAS  Google Scholar 

  106. Taunton J, Rowning BA, Coughlin ML, Wu M, Moon RT, Mitchison TJ, Larabell CA (2000) Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J Cell Biol 148(3):519–530

    PubMed  CAS  Google Scholar 

  107. Taunton J (2001) Actin filament nucleation by endosomes, lysosomes and secretory vesicles. Curr Opin Cell Biol 13(1):85–91

    PubMed  CAS  Google Scholar 

  108. Tsakiridis T, Vranic M, Klip A (1994) Disassembly of the actin network inhibits insulin-dependent stimulation of glucose transport and prevents recruitment of glucose transporters to the plasma membrane. J Biol Chem 269(47):29934–29942

    PubMed  CAS  Google Scholar 

  109. Tsukamoto N, Hattori M, Yang H, Bos JL, Minato N (1999) Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J Biol Chem 274(26):18463–18469

    PubMed  CAS  Google Scholar 

  110. Thirumurugan K, Sakamoto T, Hammer JA 3rd, Sellers JR, Knight PJ (2006) The cargo-binding domain regulates structure and activity of myosin 5. Nature 442(7099):212–215

    PubMed  CAS  Google Scholar 

  111. Tong P, Khayat ZA, Huang C, Patel N, Ueyama A, Klip A (2001) Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest 108(3):371–381

    PubMed  CAS  Google Scholar 

  112. Valenti G, Procino G, Carmosino M, Frigeri A, Mannucci R, Nicoletti I, Svelto M (2000) The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J Cell Sci 113(11):1985–1992

    PubMed  CAS  Google Scholar 

  113. van Oudenaarden A, Theriot JA (1999) Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat Cell Biol 1(8):493–499

    PubMed  Google Scholar 

  114. Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16(6):2670–2680

    PubMed  CAS  Google Scholar 

  115. Wang XH, Zheng JQ, Poo MM (1996) Effects of cytochalasin treatment on short-term synaptic plasticity at developing neuromuscular junctions in frogs. J Physiol 491(1):187–195

    PubMed  CAS  Google Scholar 

  116. Wang L, Merz AJ, Collins KM, Wickner W (2003) Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J Cell Biol 160(3):365–374

    PubMed  CAS  Google Scholar 

  117. Wang F, Thirumurugan K, Stafford WF, Hammer JA 3rd, Knight PJ, Sellers JR (2004) Regulated conformation of myosin V. J Biol Chem 279(4):2333–2336

    PubMed  CAS  Google Scholar 

  118. Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura K, Ushiki T, Sato O, Ikebe M, Igarashi M (2005) Myosin-Va regulates exocytosis through the submicromolar Ca2-dependent binding of syntaxin-1A. Mol Biol Cell 16(10):4519–4530

    PubMed  CAS  Google Scholar 

  119. Watson RT, Pessin JE (2007) GLUT4 translocation: the last 200 nanometers. Cell Signal 19(11):2209–2217

    PubMed  CAS  Google Scholar 

  120. Yin HL, Janmey PA (2003) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65:761–789

    PubMed  CAS  Google Scholar 

  121. Zhang L, Marcu MG, Nau-Staudt K, Trifaró JM (1996) Recombinant scinderin enhances exocytosis, an effect blocked by two scinderin-derived actin-binding peptides and PIP2. Neuron 17(2):287–296

    PubMed  CAS  Google Scholar 

  122. Zoncu R, Perera RM, Sebastian R, Nakatsu F, Chen H, Balla T, Ayala G, Toomre D, De Camilli PV (2007) Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 104(10):3793–3798

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Saburo Horikawa for the useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumi Noda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, Y., Sasaki, S. The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2. Pflugers Arch - Eur J Physiol 456, 737–745 (2008). https://doi.org/10.1007/s00424-007-0404-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0404-2

Keywords

Navigation