Skip to main content
Log in

Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat

  • Skeletal Muscle
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca2+ activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbott RH, Steiger GJ (1977) Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle. J Physiol 266:13–42

    PubMed  CAS  Google Scholar 

  2. Andreev OA, Saraswat LD, Lowey S, Slaughter C, Borejdo J (1999) Interaction of the N-terminus of chicken skeletal essential light chain 1 with F-actin. Biochemistry 38:2480–2485

    Article  PubMed  CAS  Google Scholar 

  3. Andruchov O, Andruchova O, Wang Y, Galler S (2004) Kinetic properties of myosin heavy chain isoforms in mouse skeletal muscle: comparison with rat, rabbit and human and correlation with amino acid sequence. Am J Physiol Cell Physiol 287:C1725–C1732

    Article  PubMed  CAS  Google Scholar 

  4. Andruchov O, Wang Y, Andruchova O, Galler S (2004) Functional properties of skinned rabbit skeletal and cardiac muscle preparations containing α-cardiac myosin heavy chain. Pflugers Arch 448:44–53

    Article  PubMed  CAS  Google Scholar 

  5. Andruchov O, Andruchova O, Wang Y, Galler S (2006) Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres. J Physiol 571:231–242

    Article  PubMed  CAS  Google Scholar 

  6. Aydt EM, Wolff G, Morano I (2007) Molecular modelling of myosin-S1(A1) isoform. J Struct Biol 159:158–163

    Article  PubMed  CAS  Google Scholar 

  7. Bicer S, Reiser PJ (2004) Myosin light chain isoform expression among single mammalian skeletal muscle fibers: species variations. J Muscle Res Cell Motil 25:622–633

    Article  CAS  Google Scholar 

  8. Bortolotto SK, Stephenson DG, Stephenson GM (2000) MHC isoforms composition and Ca2+—or Sr2+—activation properties of rat skeletal muscle fibers. Am J Physiol Cell Physiol 279:C1564–C1577

    PubMed  CAS  Google Scholar 

  9. Bottinelli R (2001) Functional heterogeneity of mammalian single muscle fibres: do myosin isoform tell the whole story? Pflugers Arch 443:6–17

    Article  PubMed  CAS  Google Scholar 

  10. Bottinelli R, Betto R, Schiaffino S, Reggiani C (1994) Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol 478:341–349

    PubMed  CAS  Google Scholar 

  11. D’Antona G, Megighian A, Bortolotto S, Pellegrino MA, Ragona RM, Staffieri A, Bottinelli R, Reggiani C (2002) Contractile properties and myosin heavy chain isoform composition in single fibre of human laryngeal muscles. J Muscle Res Cell Motil 23:187–195

    Article  PubMed  CAS  Google Scholar 

  12. Danieli-Betto D, Betto R, Midrio M (1990) Calcium sensitivity and myofibrillar protein isoforms of rat skinned skeletal muscle fibres. Pflugers Arch 417:303–308

    Article  PubMed  CAS  Google Scholar 

  13. Davis JS, Satorius CL, Epstein ND (2002) Kinetic effects of myosin regulatory light chain phosphorylation on skeletal muscle contraction. Biophys J 83:359–370

    PubMed  CAS  Google Scholar 

  14. Ford LE, Huxley AF, Simmons RM (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol 269:441–515

    PubMed  CAS  Google Scholar 

  15. Galler S, Hilber K (1994) Unloaded shortening of skinned mammalian skeletal muscle fibres. Effects of the experimental approach and passive force. J Muscle Res Cell Motil 15:400–412

    Article  PubMed  CAS  Google Scholar 

  16. Galler S, Schmitt T, Pette D (1994) Stretch activation, unloaded shortening velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres. J Physiol 478:513–521

    PubMed  CAS  Google Scholar 

  17. Galler S, Hilber K, Pette D (1996) Force responses following stepwise length changes of rat skeletal muscle fibre types. J Physiol 493:219–227

    PubMed  CAS  Google Scholar 

  18. Galler S, Hilber K, Pette D (1997) Stretch activation and myosin heavy chain isoforms of rat, rabbit and human skeletal muscle fibres. J Muscle Res Cell Motil 18:441–448

    Article  PubMed  CAS  Google Scholar 

  19. Galler S, Schmitt T, Hilber K, Pette D (1997) Stretch activation and isoforms of myosin heavy chain and troponin T of rat skeletal muscle fibres. J Muscle Res Cell Motil 18:555–561

    Article  PubMed  CAS  Google Scholar 

  20. Galler S (1999) Ca2+, Sr2+force relationships and kinetic properties of fast-twitch rat leg muscle fibre subtypes. Acta Physiol Scand 167:131–141

    Article  PubMed  CAS  Google Scholar 

  21. Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728

    Article  PubMed  CAS  Google Scholar 

  22. Goldman YE, Hibberd MG, McCray JA, Trentham DR (1982) Relaxation of muscle fibes by photolysis of caged ATP. Nature 300:701–705

    Article  PubMed  CAS  Google Scholar 

  23. Heinl P, Kuhn HJ, Rüegg JC (1974) Tension responses to quick length changes of glycerinated skeletal muscle fibers from frog and tortoise. J Physiol 237:243–258

    PubMed  CAS  Google Scholar 

  24. Hernandez OM, Jones M, Guzman G, Szczesna-Gordary D (2007) Myosin essential light chain in health and disease. Am J Physiol 292:H1643–H1654

    Article  CAS  Google Scholar 

  25. Hilber K, Galler S (1998) Improvement of the measurements on skinned muscle fibres by fixation of the fibre ends with glutaraldehyde. J Muscle Res Cell Motil 19:365–372

    Article  PubMed  CAS  Google Scholar 

  26. Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  27. Kawai M, Brandt PW (1980) Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish. J Muscle Res Cell Motil 1:279–303

    Article  PubMed  CAS  Google Scholar 

  28. Kawai M, Zhao Y (1993) Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibres. Biophys J 65:638–651

    Article  PubMed  CAS  Google Scholar 

  29. Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscle. J Physiol 472:595–614

    PubMed  CAS  Google Scholar 

  30. Linari M, Reedy MK, Reedy MC, Lombardi V, Piazzesi G (2004) Ca-activation and stretch-activation in insect flight muscle. Biophys J 87:1101–1111

    Article  PubMed  CAS  Google Scholar 

  31. Lowey S, Risby D (1971) Light chains from fast and slow muscle myosins. Nature 234:81–85

    Article  PubMed  CAS  Google Scholar 

  32. Lowey S, Trybus KM (1995) Role of skeletal and smooth muscle myosin light chain. Biophys J 68:120s–128s

    PubMed  CAS  Google Scholar 

  33. Maughan D, Moore J, Vigoreaux J, Barnes B, Mulieri LA (1998) Work production and work absorption in muscle strips from vertebrate cardiac and insect flight muscle fibers. Adv Exp Med Biol 453:471–480

    PubMed  CAS  Google Scholar 

  34. Merril CR (1990) Gel-staining techniques. Meth Enzymol 182:477–488

    Article  PubMed  CAS  Google Scholar 

  35. Miller MS, Palmer BM, Ruch S, Martin LA, Farman GP, Wang Y, Robbins J, Irving TC, Maughan DW (2005) The essential light chain N-terminal extension alters force and fiber kinetics in mouse cardiac muscle. J Biol Chem 280:34427–34434

    Article  PubMed  CAS  Google Scholar 

  36. Mizusawa H, Takagi A, Sugita H, Toyokura Y (1982) Coexistence of fast and slow types of myosin light chains in single fiber of rat soleus muscle. J Biochem 91:423–425

    PubMed  CAS  Google Scholar 

  37. Morano I, Ritter O, Bonz A, Timek T, Vahl CF, Michel G (1995) Myosin light chain–actin interaction regulates cardiac contractility. Circ Res 76:720–725

    PubMed  CAS  Google Scholar 

  38. Morano I, Haase H (1997) Different actin affinities of human cardiac essential myosin light chain isoforms. FEBS Lett 408:71–74

    Article  PubMed  CAS  Google Scholar 

  39. Persechini A, Stull JT, Cooke R (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J Biol Chem 260:7951–1954

    PubMed  CAS  Google Scholar 

  40. Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    PubMed  CAS  Google Scholar 

  41. Pinniger GJ, Ranatunga KW, Offer GW (2006) Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke. J Physiol 573:627–643

    Article  PubMed  CAS  Google Scholar 

  42. Ranatunga KW, Coupland ME, Mutungi G (2002) An asymmetry in the phosphate dependence of the transients induced by length perturbation in mammalian (rabbit psoas) muscle fibres. J Physiol 542:899–910

    Article  PubMed  CAS  Google Scholar 

  43. Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of a myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  PubMed  CAS  Google Scholar 

  44. Reconditi M, Linari M, Lucii L, Stewart A, Sun YB, Boesecke P, Narayanan T, Fischetti RF, Irving T, Piazzesi G, Irving M, Lombardi V (2004) The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428:578–581

    Article  PubMed  CAS  Google Scholar 

  45. Reiser PJ, Bicer S (2006) Multiple isoforms of myosin light chain 1 in pig diaphragm slow fibres: correlation with maximal shortening velocity and force generation. Arch Biochem Biophys 456:112–118

    Article  PubMed  CAS  Google Scholar 

  46. Salviati G, Betto R, Danieli-Betto D (1982) Polymorphism of myofibrillar proteins of rabbit skeletal muscle fibres. Biochem J 207:261–272

    PubMed  CAS  Google Scholar 

  47. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    PubMed  CAS  Google Scholar 

  48. Smerdu V, Karsch-Mizrachi I, Campione M, Leinwand L, Schiaffino S (1994) Type IIx myosin heavy chain transcripts are expressed in type IIb fibres of human skeletal muscle. Am J Physiol 267:C1723–C1728

    PubMed  CAS  Google Scholar 

  49. Sobieszek A (1977) Ca2+-linked phosphorylation of a light chain of vertebrate smooth muscle myosin. Eur J Biochem 73:477–483

    Article  PubMed  CAS  Google Scholar 

  50. Staron RS, Pette D (1987) The multiplicity of myosin light chain and heavy chain combinations in histochemically typed single fibres. Rabbit soleus muscle. Biochem J 243:687–693

    PubMed  CAS  Google Scholar 

  51. Stelzer JE, Larsson L, Fitzsimons DP, Moss RL (2006) Activation dependence of stretch activation in mouse skinned myocardium: implication for ventricular function. J Gen Physiol 127:95–107

    Article  PubMed  CAS  Google Scholar 

  52. Stephenson DG, Williams DA (1982) Effect of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat. J Physiol 333:637–653

    PubMed  CAS  Google Scholar 

  53. Stephenson GM (2001) Hybrid skeletal muscle fibres: a rare or common phenomenon? Clin Exp Pharmacol Physiol 28:692–702

    Article  PubMed  CAS  Google Scholar 

  54. Timson DJ (2003) Fine tuning of myosin motor: the role of essential light chain in striated muscle myosin. Biochimie 85:639–645

    Article  PubMed  CAS  Google Scholar 

  55. Trayer IP, Trayer HR, Levine BA (1987) Evidence that the N-terminal region of A1-light chain of myosin interacts directly with the C-terminal region of actin. A proton magnetic resonance study. Eur J Biochem 164:259–266

    CAS  Google Scholar 

  56. Vemuri R, Lankford EB, Poetter K, Hassanzadeh S, Takeda K, Yu Z-X, Ferrans VJ, Epstein ND (1999) The stretch-activation response may be critical to the proper functioning of the mammalian heart. Proc Natl Acad Sci USA 96:1048–1053

    Article  PubMed  CAS  Google Scholar 

  57. Wang G, Kawai M (1996) Effects of MgATP and MgADP on the cross-bridge kinetics of rabbit soleus slow-twitch muscle fibers. Biophys J 71:1450–1461

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mag. H. Grassberger (Salzburg) for valuable comments and critical reading of the manuscript. The work was supported by a grant of the Austrian Science Foundation (FWF-P16709-B09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Galler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andruchov, O., Galler, S. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat. Pflugers Arch - Eur J Physiol 455, 1165–1172 (2008). https://doi.org/10.1007/s00424-007-0369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0369-1

Keywords

Navigation