Skip to main content

Advertisement

Log in

Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

To stimulate renal water reabsorption, vasopressin induces phosphorylation of Aquaporin-2 (AQP2) water channels at S256 and their redistribution from vesicles to the apical membrane, whereas vasopressin removal results in AQP2 ubiquitination at K270 and its internalization to multivesicular bodies (MVB). AQP2-E258K causes dominant nephrogenic diabetes insipidus (NDI), but its subcellular location is unclear, and the molecular reason for its involvement in dominant NDI is unknown. To unravel these, AQP2-E258K was studied in transfected polarized Madin–Darby canine kidney (MDCK) cells. In MDCK cells, AQP2-E258K mainly localized to MVB/lysosomes (Lys). Upon coexpression, wild-type (wt) AQP2 and AQP2-E258K formed multimers, which also localized to MVB/Lys, independent of forskolin stimulation. Orthophosphate labeling revealed that forskolin increased phosphorylation of wt-AQP2 and AQP2-E258K but not AQP2-S256A, indicating that the E258K mutation does not interfere with the AQP2 phosphorylation at S256. In contrast to wt-AQP2 but consistent with the introduced protein kinase C (PKC) consensus site, AQP2-E258K was phosphorylated by phorbol esters. Besides the 29-kDa band, however, an additional band of about 35 kDa was observed for AQP2-E258K only, which represented AQP2-E258K uniquely monoubiquitinated at K228 only. Analysis of several mutants interfering with AQP2-E258K phosphorylation, and/or ubiquitination, however, revealed that the MVB/lysosomal sorting of AQP2-E258K occurred independent of its monoubiquitination or phosphorylation by PKC. Instead, our data reveal that the loss of the E258 in AQP2-E258K is fundamental to its missorting to MVB/Lys and indicate that this amino acid has an important role in the proper structure formation of the C-terminal tail of AQP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asai T, Kuwahara M, Kurihara H, Sakai T, Terada Y, Marumo F, Sasaki S (2003) Pathogenesis of nephrogenic diabetes. insipidus by aquaporin-2 C-terminus mutations. Kidney Int 64:2–10

    Article  PubMed  CAS  Google Scholar 

  2. De Mattia F, Savelkoul PJ, Bichet DG, Kamsteeg EJ, Konings IB, Marr N, Arthus MF, Lonergan M, van Os CH, van der SP, Robertson G, Deen PM (2004) A novel mechanism in recessive nephrogenic diabetes insipidus: wild-type aquaporin-2 rescues the apical membrane expression of intracellularly retained AQP2-P262L. Hum Mol Genet 13:3045–3056

    Article  PubMed  CAS  Google Scholar 

  3. De Mattia F, Savelkoul PJ, Kamsteeg EJ, Konings IB, van der SP, Mallmann R, Oksche A, Deen PM (2005) Lack of arginine vasopressin-induced phosphorylation of Aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol 16:2872–2880

    Article  PubMed  CAS  Google Scholar 

  4. Deen PMT, Croes H, van Aubel RA, Ginsel LA, van Os CH (1995) Water channels encoded by mutant aquaporin-2 genes in nephrogenic diabetes insipidus are impaired in their cellular routing. J Clin Invest 95:2291–2296

    PubMed  CAS  Google Scholar 

  5. Deen PMT, Rijss JPL, Mulders SM, Errington RJ, van Baal J, van Os CH (1997) Aquaporin-2 transfection of Madin–Darby canine kidney cells reconstitutes vasopressin-regulated transcellular osmotic water transport. J Am Soc Nephrol 8:1493–1501

    PubMed  CAS  Google Scholar 

  6. Deen PMT, Van Balkom BWM, Savelkoul PJ, Kamsteeg EJ, Van Raak M, Jennings ML, Muth TR, Rajendran V, Caplan MJ (2002) Aquaporin-2: COOH terminus is necessary but not sufficient for routing to the apical membrane. Am J Physiol Renal Physiol 282:F330–F340

    PubMed  Google Scholar 

  7. Deen PMT, Verdijk MAJ, Knoers NVAM, Wieringa B, Monnens LAH, van Os CH, van Oost BA (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Article  PubMed  CAS  Google Scholar 

  8. Ecelbarger CA, Terris J, Frindt G, Echevarria M, Marples D, Nielsen S, Knepper MA (1995) Aquaporin-3 water channel localization and regulation in rat kidney. Am J Physiol 38:F663–F672

    Google Scholar 

  9. Fushimi K, Sasaki S, Marumo F (1997) Phosphorylation of serine 256 is required for cAMP- dependent regulatory exocytosis of the aquaporin-2 water channel. J Biol Chem 272:14800–14804

    Article  PubMed  CAS  Google Scholar 

  10. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    PubMed  CAS  Google Scholar 

  11. Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  PubMed  CAS  Google Scholar 

  12. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461–466

    Article  PubMed  CAS  Google Scholar 

  13. Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PMT, van der SP (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279:2975–2983

    Article  PubMed  CAS  Google Scholar 

  14. Hirano K, Zuber C, Roth J, Ziak M (2003) The proteasome is involved in the degradation of different aquaporin-2 mutants causing nephrogenic diabetes insipidus. Am J Pathol 163:111–120

    PubMed  CAS  Google Scholar 

  15. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21:737–748

    Article  PubMed  CAS  Google Scholar 

  16. Ikonen E, Tagaya M, Ullrich O, Montecucco C, Simons K (1995) Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 81:571–580

    Article  PubMed  CAS  Google Scholar 

  17. Kamsteeg EJ, Bichet DG, Konings IB, Nivet H, Lonergan M, Arthus MF, van Os CH, Deen PMT (2003) Reversed polarized delivery of an aquaporin-2 mutant causes dominant nephrogenic diabetes insipidus. J Cell Biol 163:1099–1109

    Article  PubMed  CAS  Google Scholar 

  18. Kamsteeg EJ, Deen PMT (2000) Importance of aquaporin-2 expression levels in genotype -phenotype studies in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 279:F778–F784

    PubMed  CAS  Google Scholar 

  19. Kamsteeg EJ, Heijnen I, van Os CH, Deen PMT (2000) The subcellular localization of an Aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol 151:919–930

    Article  PubMed  CAS  Google Scholar 

  20. Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der SP, Klumperman J, Deen PM (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103:18344–18349

    Article  PubMed  CAS  Google Scholar 

  21. Kamsteeg EJ, Wormhoudt TA, Rijss JPL, van Os CH, Deen PMT (1999) An impaired routing of wild-type aquaporin-2 after tetramerization with an aquaporin-2 mutant explains dominant nephrogenic diabetes insipidus. EMBO J 18:2394–2400

    Article  PubMed  CAS  Google Scholar 

  22. Katsura T, Gustafson CE, Ausiello DA, Brown D (1997) Protein kinase A phosphorylation is involved in regulated exocytosis of aquaporin-2 in transfected LLC-PK1 cells. Am J Physiol 41:F816–F822

    Google Scholar 

  23. Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, Shinbo I, Uchida S, Terada Y, Arthus MF, Lonergan M, Fujiwara TM, Bichet DG, Marumo F, Sasaki S (2001) Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet 69:738–748

    Article  PubMed  CAS  Google Scholar 

  24. Marchese A, Benovic JL (2001) Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem 276:45509–45512

    Article  PubMed  CAS  Google Scholar 

  25. Marr N, Bichet DG, Hoefs S, Savelkoul PJ, Konings IB, De Mattia F, Graat MP, Arthus MF, Lonergan M, Fujiwara TM, Knoers NVAM, Landau D, Balfe WJ, Oksche A, Rosenthal W, Muller D, van Os CH, Deen PMT (2002) Cell-biologic and functional analyses of five new aquaporin-2 missense mutations that cause recessive nephrogenic diabetes insipidus. J Am Soc Nephrol 13:2267–2277

    Article  PubMed  CAS  Google Scholar 

  26. Marr N, Bichet DG, Lonergan M, Arthus MF, Jeck N, Seyberth HW, Rosenthal W, van Os CH, Oksche A, Deen PMT (2002) Heteroligomerization of an Aquaporin-2 mutant with wild-type Aquaporin- 2 and their misrouting to late endosomes/lysosomes explains dominant nephrogenic diabetes insipidus. Hum Mol Genet 11:779–789

    Article  PubMed  CAS  Google Scholar 

  27. McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 103:6952–6957

    Article  PubMed  CAS  Google Scholar 

  28. Molloy SS, Thomas L, Kamibayashi C, Mumby MC, Thomas G (1998) Regulation of endosome sorting by a specific PP2A isoform. J Cell Biol 142:1399–1411

    Article  PubMed  CAS  Google Scholar 

  29. Mulders SM, Bichet DG, Rijss JPL, Kamsteeg EJ, Arthus MF, Lonergan M, Fujiwara M, Morgan K, Leijendekker R, van der Sluijs P, van Os CH, Deen PMT (1998) An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 102:57–66

    Article  PubMed  CAS  Google Scholar 

  30. Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann JB, Engel A, Fujiyoshi Y (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605

    Article  PubMed  CAS  Google Scholar 

  31. Nabi IR, Le Bivic A, Fambrough D, Rodriguez-Boulan E (1991) An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes. J Cell Biol 115:1573–1584

    Article  PubMed  CAS  Google Scholar 

  32. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    Article  PubMed  CAS  Google Scholar 

  33. Procino G, Carmosino M, Marin O, Brunati AM, Contri A, Pinna LA, Mannucci R, Nielsen S, Kwon TH, Svelto M, Valenti G (2003) Ser-256 phosphorylation dynamics of Aquaporin 2 during maturation from the ER to the vesicular compartment in renal cells. FASEB J 17:1886–1888

    PubMed  CAS  Google Scholar 

  34. Robertson GL (1995) Diabetes insipidus. Endocrinol Metab Clin North Am 24:549–572

    PubMed  CAS  Google Scholar 

  35. Rosenthal W, Seibold A, Antaramian A, Lonergan M, Arthus M-F, Hendy GN, Birnbaumer M, Bichet DG (1992) Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359:233–235

    Article  PubMed  CAS  Google Scholar 

  36. Sabatini DD, Adesnik M, Ivanov IE, Simon JP (1996) Mechanism of formation of post Golgi vesicles from TGN membranes: Arf-dependent coat assembly and PKC-regulated vesicle scission. Biocell 20:287–300

    PubMed  CAS  Google Scholar 

  37. Schenk AD, Werten PJ, Scheuring S, de Groot BL, Muller SA, Stahlberg H, Philippsen A, Engel A (2005) The 4.5A Structure of Human AQP2. J Mol Biol 350:278–289

    Article  PubMed  CAS  Google Scholar 

  38. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  PubMed  CAS  Google Scholar 

  39. Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, Ohno M, Harada A, Sasaki S, Uchida S (2006) Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci USA 103:14217–14222

    Article  PubMed  CAS  Google Scholar 

  40. Staub O, Rotin D (2006) Role of ubiquitylation in cellular membrane transport. Physiol Rev 86:669–707

    Article  PubMed  CAS  Google Scholar 

  41. Subramaniam VN, Krijnse-Locker J, Tang BL, Ericsson M, Yusoff AR, Griffiths G, Hong W (1995) Monoclonal antibody HFD9 identifies a novel 28 kDa integral membrane protein on the cis-Golgi. J Cell Sci 108:2405–2414

    PubMed  CAS  Google Scholar 

  42. Terris J, Ecelbarger CA, Marples D, Knepper MA, Nielsen S (1995) Distribution of aquaporin-4 water channel expression within rat kidney. Am J Physiol 38:F775–F785

    Google Scholar 

  43. Thomsen P, van Deurs B, Norrild B, Kayser L (2000) The HPV16 E5 oncogene inhibits endocytic trafficking. Oncogene 19:6023–6032

    Article  PubMed  CAS  Google Scholar 

  44. Tornroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  CAS  Google Scholar 

  45. Van Balkom BWM, Savelkoul PJ, markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PMT (2002) The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem 277:41473–41479

    Article  PubMed  CAS  Google Scholar 

  46. van Beest M, Robben JH, Savelkoul PJ, Hendriks G, Devonald MA, Konings IB, Lagendijk AK, Karet F, Deen PM (2006) Polarisation, key to good localisation. Biochim Biophys Acta 1758:1126–1133

    Article  PubMed  CAS  Google Scholar 

  47. van den Ouweland AM, Dreesen JC, Verdijk MAJ, Knoers NVAM (1992) Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with Nephrogenic Diabetes Insipidus. Nat Genet 2:99–102

    Article  PubMed  Google Scholar 

  48. van Lieburg AF, Verdijk MAJ, Knoers NVAM, van Essen AJ, Proesmans W, Mallmann R, Monnens LAH, van Oost BA, van Os CH, Deen PMT (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am J Hum Genet 55:648–652

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Dutch Organization of Scientific Research (NWO-MW 902-18-292) to PMTD and PvdS and to EJK (NWO; 916.36.122) and from the European Union (QLRT-2000-00778, QLK3-CT-2001-00987) to PMTD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. T. Deen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamsteeg, EJ., Savelkoul, P.J.M., Hendriks, G. et al. Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflugers Arch - Eur J Physiol 455, 1041–1054 (2008). https://doi.org/10.1007/s00424-007-0364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0364-6

Keywords

Navigation