Skip to main content

Advertisement

Log in

Role of nonconserved charged residues of the AE2 transmembrane domain in regulation of anion exchange by pH

  • Acid-Base Regulation
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The ubiquitous AE2/SLC4A2 anion exchanger is acutely and independently regulated by intracellular (pHi) and extracellular pH (pHo), whereas the closely related AE1/SLC4A1 of the red cell and renal intercalated cell is relatively pH-insensitive. We have investigated the contribution of nonconserved charged residues within the C-terminal transmembrane domain (TMD) of AE2 to regulation by pH through mutation to the corresponding AE1 residues. AE2-mediated Cl/Cl exchange was measured as 4,4′-di-isothiocyanatostilbene-2,2′-disulfonic acid-sensitive 36Cl efflux from Xenopus oocytes by varying pHi at constant pHo, and by varying pHo at near-constant pHi. All mutations of nonconserved charged residues of the AE2 TMD yielded functional protein, but mutations of some conserved charged residues (R789E, R1056A, R1134C) reduced or abolished function. Individual mutation of AE2 TMD residues R921, F922, P1077, and R1107 exhibited reduced pHi sensitivity compared to wt AE2, whereas TMD mutants K1153R, R1155K, R1202L displayed enhanced sensitivity to acidic pHi. In addition, pHo sensitivity was significantly acid- shifted when nonconserved AE2 TMD residues E981, K982, and D1075 were individually converted to the corresponding AE1 residues. These results demonstrate that multiple conserved charged residues are important for basal transport function of AE2 and that certain nonconserved charged residues of the AE2 TMD are essential for wild-type regulation of anion exchange by pHi and pHo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abuladze N, Azimov R, Newman D, Sassani P, Liu W, Tatishchev S, Pushkin A, Kurtz I (2005) Critical amino acid residues involved in the electrogenic sodium-bicarbonate cotransporter kNBC1-mediated transport. J Physiol 565:717–730

    Article  PubMed  CAS  Google Scholar 

  2. Accardi A, Kolmakova-Partensky L, Williams C, Miller C (2004) Ionic currents mediated by a prokaryotic homologue of CLC Cl− channels. J Gen Physiol 123:109–119

    Article  PubMed  CAS  Google Scholar 

  3. Alper SL, Brosius FC, Garcia AM, Gluck S, Brown D, Lodish HF (1989) Two band 3-related gene products encode putative anion exchangers of the kidney. Elsevier, Amsterdam

    Google Scholar 

  4. Alper SL, Darman RB, Chernova MN, Dahl NK (2002) The AE gene family of Cl/HCO3- exchangers. J Nephrol 15(Suppl 5):S41–S53

    PubMed  CAS  Google Scholar 

  5. Aubin CN, Linsdell P (2006) Positive Charges at the Intracellular Mouth of the Pore Regulate Anion Conduction in the CFTR Chloride Channel. J Gen Physiol 128:535–545

    Article  PubMed  Google Scholar 

  6. Benitah J, Balser JR, Marban E, Tomaselli GF (1997) Proton inhibition of sodium channels: mechanism of gating shifts and reduced conductance. J Membr Biol 155:121–131

    Article  PubMed  CAS  Google Scholar 

  7. Bruce LJ, Robinson HC, Guizouarn H, Borgese F, Harrison P, King MJ, Goede JS, Coles SE, Gore DM, Lutz HU, Ficarella R, Layton DM, Iolascon A, Ellory JC, Stewart GW (2005) Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Nat Genet 37:1258–1263

    Article  PubMed  CAS  Google Scholar 

  8. Chanchevalap S, Yang Z, Cui N, Qu Z, Zhu G, Liu C, Giwa LR, Abdulkadir L, Jiang C (2000) Involvement of histidine residues in proton sensing of ROMK1 channel. J Biol Chem 275:7811–7817

    Article  PubMed  CAS  Google Scholar 

  9. Chernova MN, Humphreys BD, Robinson DH, Stuart-Tilley AK, Garcia AM, Brosius FC, Alper SL (1997) Functional consequences of mutations in the transmembrane domain and the carboxy-terminus of the murine AE1 anion exchanger. Biochim Biophys Acta 1329:111–123

    Article  PubMed  CAS  Google Scholar 

  10. Choe H, Zhou H, Palmer LG, Sackin H (1997) A conserved cytoplasmic region of ROMK modulates pH sensitivity, conductance, and gating. Am J Physiol 273:F516–F529

    PubMed  CAS  Google Scholar 

  11. Coric T, Zheng D, Gerstein M, Canessa CM (2005) Proton sensitivity of ASIC1 appeared with the rise of fishes by changes of residues in the region that follows TM1 in the ectodomain of the channel. J Physiol 568:725–735

    Article  PubMed  CAS  Google Scholar 

  12. Dahlmann A, Li M, Gao Z, McGarrigle D, Sackin H, Palmer LG (2004) Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling. J Gen Physiol 123:441–454

    Article  PubMed  CAS  Google Scholar 

  13. Dominguez I, Itoh K, Sokol SY (1995) Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci U S A 92:8498–8502

    Article  PubMed  CAS  Google Scholar 

  14. Fakler B, Schultz JH, Yang J, Schulte U, Brandle U, Zenner HP, Jan LY, Ruppersberg JP (1996) Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. Embo J 15:4093–4099

    PubMed  CAS  Google Scholar 

  15. Fujinaga J, Tang XB, Casey JR (1999) Topology of the membrane domain of human erythrocyte anion exchange protein, AE1. J Biol Chem 274:6626–6633

    Article  PubMed  CAS  Google Scholar 

  16. Funder J, Wieth JO (1976) Chloride transport in human erythrocytes and ghosts: a quantitative comparison. J Physiol 262:679–698

    PubMed  CAS  Google Scholar 

  17. Gawenis LR, Ledoussal C, Judd LM, Prasad V, Alper SL, Stuart-Tilley A, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2004) Mice with a targeted disruption of the AE2 Cl−/HCO3− exchanger are achlorhydric. J Biol Chem 279:30531–30539

    Article  PubMed  CAS  Google Scholar 

  18. Grinstein S, Ship S, Rothstein A (1978) Anion transport in relation to proteolytic dissection of band 3 protein. Biochim Biophys Acta 507:294–304

    Article  PubMed  CAS  Google Scholar 

  19. Horita S, Yamada H, Inatomi J, Moriyama N, Sekine T, Igarashi T, Endo Y, Dasouki M, Ekim M, Al-Gazali L, Shimadzu M, Seki G, Fujita T (2005) Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol 16:2270–2278

    Article  PubMed  CAS  Google Scholar 

  20. Humphreys BD, Jiang L, Chernova MN, Alper SL (1994) Functional characterization and regulation by pH of murine AE2 anion exchanger expressed in Xenopus oocytes. Am J Physiol 267:C1295–C1307

    PubMed  CAS  Google Scholar 

  21. Karbach D, Staub M, Wood PG, Passow H (1998) Effect of site-directed mutagenesis of the arginine residues 509 and 748 on mouse band 3 protein-mediated anion transport. Biochim Biophys Acta 1371:114–122

    Article  PubMed  CAS  Google Scholar 

  22. Khan A, Romantseva L, Lam A, Lipkind G, Fozzard HA (2002) Role of outer ring carboxylates of the rat skeletal muscle sodium channel pore in proton block. J Physiol 543:71–84

    Article  PubMed  CAS  Google Scholar 

  23. Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Schneider K (1989) Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 59:927–937

    Article  PubMed  CAS  Google Scholar 

  24. Kopito RR, Lodish HF (1985) Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316:234–238

    Article  PubMed  CAS  Google Scholar 

  25. Li HC, Szigligeti P, Worrell RT, Matthews JB, Conforti L, Soleimani M (2005) Missense mutations in Na+:HCO3− cotransporter NBC1 show abnormal trafficking in polarized kidney cells: a basis of proximal renal tubular acidosis. Am J Physiol Renal Physiol 289:F61–F71

    Article  PubMed  CAS  Google Scholar 

  26. Linsdell P (2006) Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91:123–129

    Article  PubMed  CAS  Google Scholar 

  27. Morton MJ, Abohamed A, Sivaprasadarao A, Hunter M (2005) pH sensing in the two-pore domain K+ channel, TASK2. Proc Natl Acad Sci U S A 102:16102–16106

    Article  PubMed  CAS  Google Scholar 

  28. Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423

    Article  PubMed  CAS  Google Scholar 

  29. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO 3− transporters. Pflugers Arch 447:495–509

    Article  PubMed  CAS  Google Scholar 

  30. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427

    Article  PubMed  CAS  Google Scholar 

  31. Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J (1999) pH gating of ROMK (K(ir)1.1) channels: control by an Arg–Lys–Arg triad disrupted in antenatal Bartter syndrome. Proc Natl Acad Sci U S A 96:15298–15303

    Article  PubMed  CAS  Google Scholar 

  32. Stewart AK, Chernova MN, Kunes YZ, Alper SL (2001) Regulation of AE2 anion exchanger by intracellular pH: critical regions of the NH(2)-terminal cytoplasmic domain. Am J Physiol Cell Physiol 281:C1344–1354

    PubMed  CAS  Google Scholar 

  33. Stewart AK, Chernova MN, Shmukler BE, Wilhelm S, Alper SL (2002) Regulation of AE2-mediated Cl− transport by intracellular or by extracellular pH requires highly conserved amino acid residues of the AE2 NH2-terminal cytoplasmic domain. J Gen Physiol 120:707–722

    Article  PubMed  CAS  Google Scholar 

  34. Stewart AK, Kerr N, Chernova MN, Alper SL, Vaughan-Jones RD (2004) Acute pH-dependent regulation of AE2-mediated anion exchange involves discrete local surfaces of the NH2-terminal cytoplasmic domain. J Biol Chem 279:52664–52676

    Article  PubMed  CAS  Google Scholar 

  35. Stewart AK, Kurschat CE, Burns D, Banger N, Vaughan-Jones RD, Alper SL (2006) Transmembrane domain histidines contribute to regulation of AE2-mediated anion exchange by pH. Am J Physiol Cell Physiol (in press)

  36. Toye AM, Parker MD, Daly CM, Lu J, Virkki LV, Pelletier MF, Boron WF (2006) The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol 291:C788–801

    Article  PubMed  CAS  Google Scholar 

  37. Wakabayashi S, Hisamitsu T, Pang T, Shigekawa M (2003) Mutations of Arg440 and Gly455/Gly456 oppositely change pH sensing of Na+/H+ exchanger 1. J Biol Chem 278:11828–11835

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Chernova MN, Stuart-Tilley AK, Jiang L, Alper SL (1996) The cytoplasmic and transmembrane domains of AE2 both contribute to regulation of anion exchange by pH. J Biol Chem 271:5741–5749

    Article  PubMed  CAS  Google Scholar 

  39. Zhu Q, Casey JR (2004) The substrate anion selectivity filter in the human erythrocyte Cl−/HCO3− exchange protein, AE1. J Biol Chem 279:23565–23573

    Article  PubMed  CAS  Google Scholar 

  40. Zhu Q, Lee DW, Casey JR (2003) Novel topology in C-terminal region of the human plasma membrane anion exchanger, AE1. J Biol Chem 278:3112–3120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Alper.

Additional information

A. K. Stewart and C. E. Kurschat have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1 (PDF 39.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, A.K., Kurschat, C.E. & Alper, S.L. Role of nonconserved charged residues of the AE2 transmembrane domain in regulation of anion exchange by pH. Pflugers Arch - Eur J Physiol 454, 373–384 (2007). https://doi.org/10.1007/s00424-007-0220-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0220-8

Keywords

Navigation