Skip to main content

Advertisement

Log in

Characteristics of rat downregulated in adenoma (rDRA) expressed in HEK 293 cells

  • Gastrointestinal Function
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Studies with apical membrane vesicles have shown that two distinct and separate anion exchange processes are present in rat distal colon, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS)-sensitive \( {\text{Cl}}^{ - } - {\text{HCO}}^{ - }_{3} \) exchange, and DIDS-resistant Cl–OH exchange. These studies proposed that anion exchanger (AE)-1 isoform encodes the former as both apical membrane DIDS-sensitive \( {\text{Cl}}^{ - } - {\text{HCO}}^{ - }_{3} \) exchange, and AE1 specific mRNA are present only in surface cells and are downregulated in Na-depleted rats, whereas downregulated in adenoma (DRA) encodes the latter as both DIDS-resistant Cl–OH exchange, and DRA-specific proteins are present in apical membranes of both surface and crypt cells and are not altered in Na+-depleted rats. Studies were, therefore, initiated to identify the function of rat DRA (rDRA) in vitro. rDRA cDNA isolated from rat distal colon encodes a 757-amino-acid protein which has 96 and 81% homology with mDRA and hDRA, respectively. rDRA-specific mRNA expression was detectable only in specific segments of the digestive tract (duodenum, ileum, cecum, proximal colon, and distal colon) but not in the stomach, jejunum, or in the kidney, brain, heart, and lung. HEK 293 cells stably transfected with rDRA exhibited DIDS-insensitive and intracellular acid pH (pHi 6.5)-sensitive Cl uptake that: (1) was significantly stimulated by outward Cl, \( {\text{HCO}}^{ - }_{3} \), isobutyrate, and possibly OH gradients; (2) was saturated as a function of increasing extracellular Cl concentrations with an apparent K m for Cl of 2.9 ± 0.3 mM; and (3) was inhibited competitively by extracellular oxalate but not by \( {\text{SO}}^{{2 - }}_{4} \). A high rate of DIDS-insensitive Cl influx at pH 6.5 was also present under physiological Cl concentration. Our observations that rDRA mediates DIDS-insensitive, acid pH-dependent Cl uptake are consistent with prior observations that rDRA does not mediate DIDS-sensitive \( {\text{Cl}}^{{\text{ - }}} - {\text{HCO}}^{ - }_{3} \) exchange in rat distal colon. We speculate that, in addition to mediating pH-sensitive Cl uptake, rDRA may function as a modifier of other anion transport proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Binder HJ, Foster ES, Budinger ME, Hayslett JP (1987) Mechanism of electroneutral sodium chloride absorption in distal colon of the rat. Gastroenterology 93:449–455

    PubMed  CAS  Google Scholar 

  2. Chapman JM, Knoepp SM, Byeon MK, Henderson KW, Schweinfest CW (2002) The colon anion transporter, down-regulated in adenoma, induces growth suppression that is abrogated by E1A. Cancer Res 62:5083–5088

    PubMed  CAS  Google Scholar 

  3. Chernova MN, Jiang L, Shmukler BE, Schweinfest CW, Blanco P, Freedman SD, Stewart AK, Alper SL (2003) Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes. J Physiol 549:3–19

    Article  PubMed  CAS  Google Scholar 

  4. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  5. Feldman GM, Koethe JD, Stephenson RL (1990) Base secretion in rat distal colon: ionic requirements. Am J Physiol 258:G825–G832

    PubMed  CAS  Google Scholar 

  6. Feldman GM, Stephenson RL (1990) H+ and HCO3- flux across apical surface of rat distal colon. Am J Physiol 259:C35–C40

    PubMed  CAS  Google Scholar 

  7. Foster ES, Dudeja PK, Brasitus TA (1990) Contribution of Cl(−)–OH− exchange to electroneutral NaCl absorption in rat distal colon. Am J Physiol 258:G261–G267

    PubMed  CAS  Google Scholar 

  8. Frizzell RA, Field M, Schultz SG (1979) Sodium-coupled chloride transport by epithelial tissues. Am J Physiol 236:F1–F8

    PubMed  CAS  Google Scholar 

  9. Frizzell RA, Nellans HN, Rose RC, Markscheid-Kaspi L, Schultz SG (1973) Intracellular Cl concentrations and influxes across the brush border of rabbit ileum. Am J Physiol 224:328–337

    PubMed  CAS  Google Scholar 

  10. Hadjiagapiou C, Schmidt L, Dudeja PK, Layden TJ, Ramaswamy K (2000) Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 279:G775–G780

    PubMed  CAS  Google Scholar 

  11. Hoglund P, Haila S, Scherer SW, Tsui LC, Green ED, Weissenbach J, Holmberg C, de la Chapelle A, Kere J (1996) Positional candidate genes for congenital chloride diarrhea suggested by high-resolution physical mapping in chromosome region 7q31. Genome Res 6:202–210

    PubMed  CAS  Google Scholar 

  12. Hoglund P, Haila S, Socha J, Tomaszewski L, Saarialho-Kere U, Karjalainen-Lindsberg ML, Airola K, Holmberg C, de la Chapelle A, Kere J (1996) Mutations of the down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Nat Genet 14:316–319

    Article  PubMed  CAS  Google Scholar 

  13. Hoglund P, Sistonen P, Norio R, Holmberg C, Dimberg A, Gustavson KH, de la Chapelle A, Kere J (1995) Fine mapping of the congenital chloride diarrhea gene by linkage disequilibrium. Am J Hum Genet 57:95–102

    PubMed  CAS  Google Scholar 

  14. Holmberg C (1986) Congenital chloride diarrhoea. Clin Gastroenterol 15:583–602

    PubMed  CAS  Google Scholar 

  15. Holmberg C, Perheentupa J, Launiala K (1975) Colonic electrolyte transport in health and in congenital chloride diarrhea. J Clin Invest 56:302–310

    Article  PubMed  CAS  Google Scholar 

  16. Holmberg C, Perheentupa J, Launiala K, Hallman N (1977) Congenital chloride diarrhoea. Clinical analysis of 21 Finnish patients. Arch Dis Child 52:255–267

    Article  PubMed  CAS  Google Scholar 

  17. Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, Gregor M, Groneberg DA, Kere J, Seidler U (2002) Down-regulated in adenoma mediates apical Cl−/HCO3− exchange in rabbit, rat, and human duodenum. Gastroenterology 122:709–724

    Article  PubMed  CAS  Google Scholar 

  18. Knickelbein RG, Aronson PS, Dobbins JW (1985) Substrate and inhibitor specificity of anion exchangers on the brush border membrane of rabbit ileum. J Membr Biol 88:199–204

    Article  PubMed  CAS  Google Scholar 

  19. Knickelbein RG, Aronson PS, Dobbins JW (1986) Oxalate transport by anion exchange across rabbit ileal brush border. J Clin Invest 77:170–175

    PubMed  CAS  Google Scholar 

  20. Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6:343–350

    Article  PubMed  CAS  Google Scholar 

  21. Lamprecht G, Baisch S, Schoenleber E, Gregor M (2005) Transport properties of the human intestinal anion exchanger DRA (down-regulated in adenoma) in transfected HEK293 cells. Pflugers Arch 449:479–490

    Article  PubMed  CAS  Google Scholar 

  22. Mascolo N, Rajendran VM, Binder HJ (1991) Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology 101:331–338

    PubMed  CAS  Google Scholar 

  23. Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE (1999) Mouse down-regulated in adenoma (DRA) is an intestinal Cl(−)/HCO(3)(−) exchanger and is up-regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. J Biol Chem 274:22855–22861

    Article  PubMed  CAS  Google Scholar 

  24. Moseley RH, Hoglund P, Wu GD, Silberg DG, Haila S, de la Chapelle A, Holmberg C, Kere J (1999) Downregulated in adenoma gene encodes a chloride transporter defective in congenital chloride diarrhea. Am J Physiol 276:G185–G192

    PubMed  CAS  Google Scholar 

  25. Nellans HN, Frizzell RA, Schultz SG (1974) Brush-border processes and transepithelial Na and Cl transport by rabbit ileum. Am J Physiol 226:1131–1141

    PubMed  CAS  Google Scholar 

  26. Rajendran VM, Binder HJ (1993) Cl-HCO3 and Cl-OH exchanges mediate Cl uptake in apical membrane vesicles of rat distal colon. Am J Physiol 264:G874–G879

    PubMed  CAS  Google Scholar 

  27. Rajendran VM, Binder HJ (1994) Apical membrane Cl–butyrate exchange: mechanism of short chain fatty acid stimulation of active chloride absorption in rat distal colon. J Membr Biol 141:51–58

    PubMed  CAS  Google Scholar 

  28. Rajendran VM, Binder HJ (1999) Distribution and regulation of apical Cl/anion exchanges in surface and crypt cells of rat distal colon. Am J Physiol 276:G132–G137

    PubMed  CAS  Google Scholar 

  29. Rajendran VM, Black J, Ardito TA, Sangan P, Alper SL, Schweinfest C, Kashgarian M, Binder HJ (2000) Regulation of DRA and AE1 in rat colon by dietary Na depletion. Am J Physiol Gastrointest Liver Physiol 279:G931–G942

    PubMed  CAS  Google Scholar 

  30. Saksena S, Gill RK, Syed IA, Tyagi S, Alrefai WA, Ramaswamy K, Dudeja PK (2002) Modulation of Cl−/OH− exchange activity in Caco-2 cells by nitric oxide. Am J Physiol Gastrointest Liver Physiol 283:G626–G633

    PubMed  CAS  Google Scholar 

  31. Schweinfest CW, Henderson KW, Suster S, Kondoh N, Papas TS (1993) Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci USA 90:4166–4170

    Article  PubMed  CAS  Google Scholar 

  32. Silberg DG, Wang W, Moseley RH, Traber PG (1995) The down regulated in Adenoma (dra) gene encodes an intestine-specific membrane sulfate transport protein. J Biol Chem 270:11897–11902

    Article  PubMed  CAS  Google Scholar 

  33. Wang Z, Petrovic S, Mann E, Soleimani M (2002) Identification of an apical Cl(−)/HCO3(−) exchanger in the small intestine. Am J Physiol Gastrointest Liver Physiol 282:G573–G579

    PubMed  CAS  Google Scholar 

  34. Wang Z, Wang T, Petrovic S, Tuo B, Riederer B, Barone S, Lorenz JN, Seidler U, Aronson PS, Soleimani M (2005) Renal and intestinal transport defects in Slc26a6-null mice. Am J Physiol Cell Physiol 288:C957–C965

    Article  PubMed  CAS  Google Scholar 

  35. Yang H, Jiang W, Furth EE, Wen X, Katz JP, Sellon RK, Silberg DG, Antalis TM, Schweinfest CW, Wu GD (1998) Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea. Am J Physiol 275:G1445–G1453

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a USPHS research grant (DK60069) from the National Institute of Diabetes, Digestive and Kidney Diseases, and a grant from the Wellcome Trust. C. Barmeyer was supported in part by a research fellowship of the Deutsche Forschungsgemeinschaft (German Research Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Binder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barmeyer, C., Ye, J.H., Sidani, S. et al. Characteristics of rat downregulated in adenoma (rDRA) expressed in HEK 293 cells. Pflugers Arch - Eur J Physiol 454, 441–450 (2007). https://doi.org/10.1007/s00424-007-0213-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0213-7

Keywords

Navigation