Skip to main content

Advertisement

Log in

Molecular impact of clenbuterol and isometric strength training on rat EDL muscles

  • Skeletal Muscle
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Clenbuterol, a β2-adrenergic-receptor agonist, is known to provoke muscle hypertrophy and a slow-to-fast phenotype change. A more glycolytic phenotype should be paralleled by changes in muscle glycolytic metabolism. Two groups (n=16 for each) of 3-month-old male Wistar rats (UCL: untrained clenbuterol, and ECL: exercised clenbuterol) received a chronic administration of clenbuterol (2 mg/kg body weight/day). Two other groups of animals (U: untrained and E: exercised), were given a 0.9% NaCl solution instead of clenbuterol. E and ECL animals followed an 8-week progressive isometric force strength-training program. Both clenbuterol administration and training resulted in an increase in extensor digitorum longus (EDL) mass despite the fact that this muscle was indirectly mobilised during isometric force strength training. Clenbuterol and training induced a consistent slow-to-fast phenotype change without drastically increasing specific activities of glycolytic enzymes. Except for GAPDH and hexokinase, modifications in glycolytic-enzyme-specific activities were not explained by transcriptional changes. Lactate dehydrogenase activity was not affected by clenbuterol but was strongly augmented by training. In EDL of ECL rats, both treatments presented an opposite effect compensating each other. GLUT1 mRNA expression was augmented in EDL of UCL and ECL animals, whereas monocarboxylate transporter 1 mRNA amounts were decreased in EDL of UCL rats. Citrate synthase activity was reduced by clenbuterol treatment but remained unchanged in EDL of E animals. Creatine kinase activity was enhanced only by clenbuterol alone. These data show that clenbuterol-induced muscle hypertrophy and slow-to-fast phenotype changes are not associated with a glycolytic-enzyme-activity increase. They also suggest that in EDL isometric force strength training can reverse clenbuterol-induced molecular adaptations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson G, Wilkins E (1997) A trial of clenbuterol in bronchial asthma. Thorax 32:717–719

    Google Scholar 

  2. Awede BL, Thissen JP, Lebacq J (2002) Role of IGF-I and IGFBPs in the changes of mass and phenotype induced in rat soleus muscle by clenbuterol. Am J Physiol Endocrinol Metab 282:E31–E37

    PubMed  CAS  Google Scholar 

  3. Benovic JL (2002) Novel beta2-adrenergic receptor signaling pathways. J Allergy Clin Immunol 110:S229–S235

    Article  PubMed  CAS  Google Scholar 

  4. Bertin E, Ruiz JC, Mourot J, Peiniau P, Portha B (1998) Evaluation of dual-energy X-ray absorptiometry for body-composition assessment in rats. J Nutr 128:1550–1554

    PubMed  CAS  Google Scholar 

  5. Bonen A (2001) The expression of lactate transporters (MCT1 and MCT4) in heart and muscle. Eur J Appl Physiol 86:6–11

    PubMed  CAS  Google Scholar 

  6. Cavalié H, Horcajada-Molteni MN, Lebecque P, Avicco MJ, Coxam V, Lac G, Barlet JP (2003) Progressive isometric force training and bone mass in rats. J Musculoskelet Neuronal Interact 3:47–52

    PubMed  Google Scholar 

  7. Cavalié H, Lac G, Lebecque P, Chanteranne B, Davicco MJ, Barlet JP (2002) Influence of clenbuterol on bone metabolism in exercised or sedentary rats. J Appl Phys 93:2034–2037

    Google Scholar 

  8. Cavalié H, Mounier R, Clottes E, Bricout V, Lac G (2004) Clenbuterol treatment differently affects muscle in exercised or sedentary rats. J Exerc Physiol 7:111–120

    Google Scholar 

  9. Clarkson PM, Thompson HS (1997) Drugs and sport. Research findings and limitations. Sports Med 24:366–384

    PubMed  CAS  Google Scholar 

  10. Delbeke FT, Desmet N, Debackere M (1995) The abuse of doping agents in competing body builders in Flanders (1988–1993). Int J Sports Med 16:66–70

    PubMed  CAS  Google Scholar 

  11. Herrera NM Jr, Zimmerman AN, Dykstra DD, Thompson LV (2001) Clenbuterol in the prevention of muscle atrophy: a study of hindlimb-unweighted rats. Arch Phys Med Rehabil 82:930–934

    Article  PubMed  Google Scholar 

  12. Joseph J, Cruz-Sanchez FF, Carreras J (1996) Enolase activity and isoenzyme distribution in human brain regions and tumors. J Neurochem 66:2484–2490

    Article  PubMed  CAS  Google Scholar 

  13. Juel C, Halestrap AP (1999) Lactate transport in skeletal muscle- role and regulation of the monocarboxylate transporter. J Physiol 517:633–642

    Article  PubMed  CAS  Google Scholar 

  14. Kandus J, Salat D (1987) Treatment of bronchial obstruction in asthma. Bull Eur Physiopathol Respir 23(Suppl 10):S103–S105

    Google Scholar 

  15. Kitaura T, Tsunekawa N, Hatta H (2001) Decreased monocarboxylate transporter 1 in rat soleus and EDL muscles exposed to clenbuterol. J Appl Phys 91:85–90

    CAS  Google Scholar 

  16. Lac G, Cavalié H (1999) A rat model of progressive isometric strength training. Arch Physiol Biochem 107:144–151

    Article  PubMed  CAS  Google Scholar 

  17. Lynch GS, Hayes A, Campbell SP, Williams DA (1996) Effects of beta 2-agonist administration and exercise on contractile activation of skeletal muscle fibers. J Appl Phys 81:1610–1618

    CAS  Google Scholar 

  18. Maltin CA, Delday MI, Hay SM, Smith FG, Lobley GE, Reeds PJ (1987) The effect of the anabolic agent, clenbuterol, on overloaded rat skeletal muscle. Biosci Rep 7:143–149

    Article  PubMed  CAS  Google Scholar 

  19. Megeney LA, Neufer PD, Dohm GL, Tan MH, Blewett CA, Elder GC, Bonen A (1993) Effects of muscle activity and fiber composition on glucose transport and GLUT-4. Am J Physiol 264:E583–E593

    PubMed  CAS  Google Scholar 

  20. Mitchell GA, Dunnavan G (1998) Illegal use of beta-adrenergic agonists in the United States. Anim Sci 76:208–211

    CAS  Google Scholar 

  21. Moore NG, Pegg GG, Sillence MN (1994) Anabolic effects of the beta 2-adrenoceptor agonist salmeterol are dependent on route of administration. Am J Physiol 267:E475–E478

    PubMed  CAS  Google Scholar 

  22. Mueckler M (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725

    Article  PubMed  CAS  Google Scholar 

  23. Navegantes LC, Machado CR, Resano NM, Migliorini RH, Kettelhut IC (2003) Beta2-agonists and cAMP inhibit protein degradation in isolated chick (Gallus domesticus) skeletal muscle. Br Poult Sci 44:149–154

    Article  PubMed  CAS  Google Scholar 

  24. Navegantes LC, Resano NM, Migliorini RH, Kettelhut IC (2001) Catecholamines inhibit Ca(2+)-dependent proteolysis in rat skeletal muscle through beta(2)-adrenoceptors and cAMP. Am J Physiol Endocrinol Metab 281:E449–E454

    PubMed  CAS  Google Scholar 

  25. Nials AT, Coleman RA, Johnson M, Magnussen H, Rabe KF, Vardey CJ (1993) Effects of beta-adrenoceptor agonists in human bronchial smooth muscle. Br J Pharmacol 110:1112–1116

    PubMed  CAS  Google Scholar 

  26. Perry H (1993) Clenbuterol: a medal in tablet form? Br J Sports Med 27:141

    Article  PubMed  CAS  Google Scholar 

  27. Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T, Linser PJ (2003) Loss of MCT1, MCT3, and MCT4 expression in the retinal pigment epithelium and neural retina of the 5A11/basigin-null mouse. Invest Ophthalmol Vis Sci 44:1305–1311

    Article  PubMed  Google Scholar 

  28. Prather ID, Brown DE, North P, Wilson JR (1995) Clenbuterol: a substitute for anabolic steroids? Med Sci Sports Exerc 27:1118–1121

    PubMed  CAS  Google Scholar 

  29. Rajab P, Fox J, Riaz S, Tomlinson D, Ball D, Greenhaff PL (2000) Skeletal muscle myosin heavy chain isoforms and energy metabolism after clenbuterol treatment in the rat. Am J Physiol Regul Integr Comp Physiol 279:R1076–R1081

    PubMed  CAS  Google Scholar 

  30. Reeds PJ, Hay SM, Dorwood PM, Palmer RM (1986) Stimulation of muscle growth by clenbuterol: lack of effect on muscle protein biosynthesis. Br J Nutr 56:249–258

    Article  PubMed  CAS  Google Scholar 

  31. Rossignol F, Solares M, Balanza E, Coudert J, Clottes E (2003) Expression of lactate dehydrogenase A and B genes in different tissues of rats adapted to chronic hypobaric hypoxia. J Cell Biochem 89:67–79

    Article  PubMed  CAS  Google Scholar 

  32. Rossignol F, Vaché C, Clottes E (2002) Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene 299:135–140

    Article  PubMed  CAS  Google Scholar 

  33. Rothwell N, Stock MJ (1985) Modification of body composition by clenbuterol in normal and dystrophic (mdx) mice. Biosci Rep 5:755–760

    Article  PubMed  CAS  Google Scholar 

  34. Spann C, Winter ME (1995) Effect of clenbuterol on athletic performance. Ann Pharmacother 29:75–77

    PubMed  CAS  Google Scholar 

  35. Srere PA (1974) Controls of citrate synthase activity. Life Sci 15:1695–1710

    Article  PubMed  CAS  Google Scholar 

  36. Stuart CA, Wen G, Gustafson WC, Thompson EA (2000) Comparison of GLUT1, GLUT3, and GLUT4 mRNA and the subcellular distribution of their proteins in normal human muscle. Metabolism 49:1604–1609

    Article  PubMed  CAS  Google Scholar 

  37. Talmadge RJ, Roy RR (1993) Electrophoretic separation of rat skeletal muscle myosin heavy-chain isoforms. J Appl Physiol 75:2337–2340

    PubMed  CAS  Google Scholar 

  38. Tsao TS, Li J, Chang KS, Stenbit AE, Galuska D, Anderson JE, Zierath JR, McCarter RJ, Charron MJ (2001) Metabolic adaptations in skeletal muscle overexpressing GLUT4: effects on muscle and physical activity. FASEB J 15:958–969

    Article  PubMed  CAS  Google Scholar 

  39. Waterfield CJ, Jairath M, Asker DS, Timbrell JA (1995) The biochemical effects of clenbuterol: with particular reference to taurine and muscle damage. Eur J Pharmacol 293:141–149

    Article  PubMed  CAS  Google Scholar 

  40. Wilson MC, Meredith D, Halestrap AP (2002) Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem 277:3666–3672

    Article  PubMed  CAS  Google Scholar 

  41. Xiao RP, Cheng H, Zhou YY, Kuschel M, Lakatta EG (1999) Recent advances in cardiac beta(2)-adrenergic signal transduction. Circ Res 85:1092–1100

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Mounier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mounier, R., Cavalié, H., Lac, G. et al. Molecular impact of clenbuterol and isometric strength training on rat EDL muscles. Pflugers Arch - Eur J Physiol 453, 497–507 (2007). https://doi.org/10.1007/s00424-006-0122-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0122-1

Keywords

Navigation