Skip to main content

Advertisement

Log in

Purinoceptors in microglia and neuropathic pain

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Emerging evidence indicates that microglia play a critical role in the pathogenesis of neuropathic pain, a debilitating chronic pain condition that can occur after peripheral nerve damage caused by disease, infection, or physical injury. Microglia are immunocompetent cells of the central nervous system and express various ionotropic P2X and metabotropic P2Y purinoceptors. After injury to a peripheral nerve, microglia in the spinal cord become activated and upregulate expression of the P2X4 receptor. Recent findings suggest that activation of P2X4 receptors evokes release of brain-derived neurotrophic factor from microglia and that this mediates microglia–neuron signaling leading to pain hypersensitivity. Thus, P2X4 receptors and the intracellular signaling mediators in microglia are promising therapeutic targets for the development of novel pharmacological agents in the management of neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  PubMed  CAS  Google Scholar 

  2. Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174:7268–7277

    PubMed  CAS  Google Scholar 

  3. Bobanovic LK, Royle SJ, Murrell-Lagnado RD (2002) P2X receptor trafficking in neurons is subunit specific. J Neurosci 22:4814–4824

    PubMed  CAS  Google Scholar 

  4. Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H (2003) Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 17:2267–2276

    Article  PubMed  Google Scholar 

  5. Brough D, Le Feuvre RA, Iwakura Y, Rothwell NJ (2002) Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. Mol Cell Neurosci 19:272–280

    Article  PubMed  CAS  Google Scholar 

  6. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 58:58–86

    Article  PubMed  CAS  Google Scholar 

  7. Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P (2002) ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci 22:3061–3069

    PubMed  Google Scholar 

  8. Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou, Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  PubMed  CAS  Google Scholar 

  9. Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36:1277–1283

    Article  PubMed  CAS  Google Scholar 

  10. Coull JM, Boudreau D, Bachand K, De Koninck Y (2003) Anion reversal potential in rat spinal lamina I neurons is modulated via the trkB receptor. Program No. 587.8, 2003, Abstract Viewer/Itinerary Planner

  11. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De Koninck P, De Koninck Y (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942

    Article  PubMed  CAS  Google Scholar 

  12. Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  PubMed  CAS  Google Scholar 

  13. Coyle DE (1998) Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior. Glia 23:75–83

    Article  PubMed  CAS  Google Scholar 

  14. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  15. Decosterd I, Woolf CJ (2000) Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87:149–158

    Article  PubMed  CAS  Google Scholar 

  16. Deuchars SA, Atkinson L, Brooke RE, Musa H, Milligan CJ, Batten TF, Buckley NJ, Parson SH, Deuchars J (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152

    PubMed  CAS  Google Scholar 

  17. Eriksson NP, Persson JK, Svensson M, Arvidsson J, Molander C, Aldskogius H (1993) A quantitative analysis of the microglial cell reaction in central primary sensory projection territories following peripheral nerve injury in the adult rat. Exp Brain Res 96:19–27

    PubMed  CAS  Google Scholar 

  18. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F (1997) Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458

    PubMed  CAS  Google Scholar 

  19. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579–582

    Article  PubMed  CAS  Google Scholar 

  20. Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539

    PubMed  CAS  Google Scholar 

  21. Gehrmann J, Banati RB (1995) Microglial turnover in the injured CNS: activated microglia undergo delayed DNA fragmentation following peripheral nerve injury. J Neuropathol Exp Neurol 54:680–688

    Article  PubMed  CAS  Google Scholar 

  22. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  23. Inoue K, Tsuda M (2006) The role of microglia and ATP receptors in a mechanism of neuropathic pain. Nippon Yakurigaku Zasshi 127:14–17

    PubMed  CAS  Google Scholar 

  24. Jin SX, Zhuang ZY, Woolf CJ, Ji RR (2003) p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 23:4017–4022

    PubMed  CAS  Google Scholar 

  25. Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  PubMed  CAS  Google Scholar 

  26. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  27. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  28. Liu XJ, Salter MW (2005) Purines and pain mechanisms: recent developments. Curr Opin Investig Drugs 6:65–75

    PubMed  Google Scholar 

  29. Liu L, Tornqvist E, Mattsson P, Eriksson NP, Persson JK, Morgan BP, Aldskogius H, Svensson M (1995) Complement and clusterin in the spinal cord dorsal horn and gracile nucleus following sciatic nerve injury in the adult rat. Neuroscience 68:167–179

    Article  PubMed  CAS  Google Scholar 

  30. Milligan ED, Zapata V, Chacur M, Schoeniger D, Biedenkapp J, O’Connor KA, Verge GM, Chapman G, Green P, Foster AC, Naeve GS, Maier SF, Watkins LR (2004) Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci 20:2294–2302

    Article  PubMed  CAS  Google Scholar 

  31. Moller T, Kann O, Verkhratsky A, Kettenmann H (2000) Activation of mouse microglial cells affects P2 receptor signaling. Brain Res 853:49–59

    Article  PubMed  CAS  Google Scholar 

  32. Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem (Tokyo) 130:169–175

    CAS  Google Scholar 

  33. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

  34. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  35. Perry VH (1994) Modulation of microglia phenotype. Neuropathol Appl Neurobiol 20:177

    PubMed  CAS  Google Scholar 

  36. Perry VH (2004) The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 18:407–413

    Article  PubMed  CAS  Google Scholar 

  37. Pezet S, Malcangio M, Lever IJ, Perkinton MS, Thompson SW, Williams RJ, McMahon SB (2002) Noxious stimulation induces Trk receptor and downstream ERK phosphorylation in spinal dorsal horn. Mol Cell Neurosci 21:684–695

    Article  PubMed  CAS  Google Scholar 

  38. Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–1772

    Article  PubMed  CAS  Google Scholar 

  39. Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K, Saarma M (2002) BDNF-induced TrkB activation down-regulates the K+–Cl cotransporter KCC2 and impairs neuronal Cl extrusion. J Cell Biol 159:747–752

    Article  PubMed  CAS  Google Scholar 

  40. Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipila S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K–Cl cotransporter KCC2. J Neurosci 24:4683–4691

    Article  PubMed  CAS  Google Scholar 

  41. Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K+–Cl cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 562:27–36

    Article  PubMed  CAS  Google Scholar 

  42. Rose CR, Blum R, Pichler B, Lepier A, Kafitz KW, Konnerth A (2003) Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells. Nature 426:74–78

    Article  PubMed  CAS  Google Scholar 

  43. Royle SJ, Bobanovic LK, Murrell-Lagnado RD (2002) Identification of a non-canonical tyrosine-based endocytic motif in an ionotropic receptor. J Biol Chem 277:35378–35385

    Article  PubMed  CAS  Google Scholar 

  44. Salter MW (2005) Cellular signalling pathways of spinal pain neuroplasticity as targets for analgesic development. Curr Top Med Chem 5:557–567

    Article  PubMed  CAS  Google Scholar 

  45. Salter MW, De Koninck Y, Henry JL (1993) Physiological roles for adenosine and ATP in synaptic transmission in the spinal dorsal horn. Prog Neurobiol 41:125–156

    Article  PubMed  CAS  Google Scholar 

  46. Sasaki Y, Hoshi M, Akazawa C, Nakamura Y, Tsuzuki H, Inoue K, Kohsaka S (2003) Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia 44:242–250

    Article  PubMed  Google Scholar 

  47. Schafers M, Svensson CI, Sommer C, Sorkin LS (2003) Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 23:2517–2521

    PubMed  CAS  Google Scholar 

  48. Scholz J, Woolf CJ (2002) Can we conquer pain? Nat Neurosci 5(Suppl):1062–1067

    Article  PubMed  CAS  Google Scholar 

  49. Seltzer Z, Dubner R, Shir Y (1990) A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205–218

    Article  PubMed  CAS  Google Scholar 

  50. Sim JA, Young MT, Sung HY, North RA, Surprenant A (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    Article  PubMed  CAS  Google Scholar 

  51. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    Article  PubMed  CAS  Google Scholar 

  52. Sweitzer SM, Hickey WF, Rutkowski MD, Pahl JL, DeLeo JA (2002) Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain 100:163–170

    Article  PubMed  Google Scholar 

  53. Sweitzer SM, White KA, Dutta C, DeLeo JA (2002) The differential role of spinal MHC class II and cellular adhesion molecules in peripheral inflammatory versus neuropathic pain in rodents. J Neuroimmunol 125:82–93

    Article  PubMed  CAS  Google Scholar 

  54. Tanga FY, Raghavendra V, DeLeo JA (2004) Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int 45:397–407

    Article  PubMed  CAS  Google Scholar 

  55. Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 102:5856–5861

    Article  PubMed  CAS  Google Scholar 

  56. Thompson SW, Bennett DL, Kerr BJ, Bradbury EJ, McMahon SB (1999) Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci US`A 96:7714–7718

    Article  PubMed  CAS  Google Scholar 

  57. Tsan MF, Gao B (2004) Endogenous ligands of toll-like receptors. J Leukoc Biol 76:514–519

    Article  PubMed  CAS  Google Scholar 

  58. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  59. Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K (2004) Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 45:89–95

    Article  PubMed  Google Scholar 

  60. Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28:101–107

    Article  PubMed  CAS  Google Scholar 

  61. Verge GM, Milligan ED, Maier SF, Watkins LR, Naeve GS, Foster AC (2004) Fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) distribution in spinal cord and dorsal root ganglia under basal and neuropathic pain conditions. Eur J Neurosci 20:1150–1160

    Article  PubMed  Google Scholar 

  62. Volterra A, Meldolesi J (2005) Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 6:626–640

    Article  PubMed  CAS  Google Scholar 

  63. Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7:103–111

    Article  PubMed  CAS  Google Scholar 

  64. Watkins LR, Maier SF (2003) Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2:973–985

    Article  PubMed  CAS  Google Scholar 

  65. Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455

    Article  PubMed  CAS  Google Scholar 

  66. Wieseler-Frank J, Maier SF, Watkins LR (2005) Central proinflammatory cytokines and pain enhancement. Neurosignals 14:166–174

    Article  PubMed  CAS  Google Scholar 

  67. Woolf CJ (2004) Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy. Life Sci 74:2605–2610

    Article  PubMed  CAS  Google Scholar 

  68. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    Article  PubMed  CAS  Google Scholar 

  69. Woolf CJ, Salter MW (2005) Plasticity and pain: role of the dorsal horn. In: McMahon SB, Koltzenberg M (eds) Melzack and wall’s textbook of pain, 5th edn. Elsevier, London, pp 91–106

    Google Scholar 

  70. Yajima Y, Narita M, Usui A, Kaneko C, Miyatake M, Narita M, Yamaguchi T, Tamaki H, Wachi H, Seyama Y, Suzuki T (2005) Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice. J Neurochem 93:584–594

    Article  PubMed  CAS  Google Scholar 

  71. Zhao J, Seereeram A, Nassar MA, Levato A, Pezet S, Hathaway G, Morenilla-Palao C, Stirling C, Fitzgerald M, McMahon SB, Rios M, Wood JN (2006) Nociceptor-derived brain-derived neurotrophic factor regulates acute and inflammatory but not neuropathic pain. Mol Cell Neurosci 31(3):539–548

    Article  PubMed  CAS  Google Scholar 

  72. Zhuang ZY, Gerner P, Woolf CJ, Ji RR (2005) ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 114:149–159

    Article  PubMed  Google Scholar 

  73. Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429:23–37

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by grants from the Canadian Institutes of Health Research and from the Brain Repair Program of Neuroscience Canada. M. W. Salter holds a Canada Research Chair (Tier I) in Neuroplasticity and Pain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Salter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trang, T., Beggs, S. & Salter, M.W. Purinoceptors in microglia and neuropathic pain . Pflugers Arch - Eur J Physiol 452, 645–652 (2006). https://doi.org/10.1007/s00424-006-0074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0074-5

Keywords

Navigation