Skip to main content

Advertisement

Log in

Quantitative single-cell RT-PCR and Ca2+ imaging in brain slices

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

We have established a quantitative reverse transcriptase-PCR (RT-PCR) approach for the analysis of RNA transcript levels in individual cells of living brain slices. Quantification is achieved by using rapid-cycle, real-time PCR protocols and high-resolution external cDNA standard curves for the gene of interest. The method consists of several procedures, including cell soma harvest, reverse transcription, and an optimized cDNA purification step, which allowed us to quantify transcripts in small types of neurons, like cerebellar granule cells. Thus, we detected in single granule cells an average of 20 transcript copies of the housekeeping gene glyceraldehyde-3-phosphate-dehydrogenase. We combined two-photon calcium imaging and quantitative RT-PCR in single Purkinje and granule cells, respectively, and identified distinct glutamate receptor-dependent Ca2+ responses in these two cell types. The approach was further tested by profiling the expression of the ionotropic glutamate receptor subunits NR2B and NR2C in the cerebellum. Our study revealed a developmental switch from an average of 15 NR2B copies/cell at postnatal day 8 (P8) to about five NR2C copies/cell after P26. Taken together, our results demonstrate that the new method is rapid, highly sensitive, provides reliable results in neurons of various sizes, and can be used in combination with Ca2+ imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347:150–160

    Article  PubMed  Google Scholar 

  2. Brustein E, Marandi N, Kovalchuk Y, Drapeau P, Konnerth A (2003) “In vivo” monitoring of neuronal network activity in zebrafish by two-photon Ca2+ imaging. Pflügers Arch 446:766–773

    Article  PubMed  Google Scholar 

  3. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    Article  PubMed  Google Scholar 

  4. Chandler DP, Wagnon CA, Bolton H Jr (1998) Reverse transcriptase (RT) inhibition of PCR at low concentrations of template and its implications for quantitative RT-PCR. Appl Environ Microbiol 64:669–677

    PubMed  Google Scholar 

  5. Chow N, Cox C, Callahan LM, Weimer JM, Guo L, Coleman PD (1998) Expression profiles of multiple genes in single neurons of Alzheimer’s disease. Proc Natl Acad Sci USA 95:9620–9625

    Article  PubMed  Google Scholar 

  6. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    PubMed  Google Scholar 

  7. Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci USA 89:3010–3014

    PubMed  Google Scholar 

  8. Eberwine J (2001) Single-cell molecular biology. Nat Neurosci 4(Suppl):1155–1156

    Article  Google Scholar 

  9. Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflügers Arch 414:600–612

    Article  PubMed  Google Scholar 

  10. Eilers J, Plant TD, Marandi N, Konnerth A (2001) GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol 536:429–437

    Article  PubMed  Google Scholar 

  11. Farrant M, Feldmeyer D, Takahashi T, Cull-Candy SG (1994) NMDA-receptor channel diversity in the developing cerebellum. Nature 368:335–339

    Article  PubMed  Google Scholar 

  12. Fink L, Seeger W, Ermert L, Hanze J, Stahl U, Grimminger F, Kummer W, Bohle RM (1998) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 4:1329–1333

    Article  PubMed  Google Scholar 

  13. Garaschuk O, Linn J, Eilers J, Konnerth A (2000) Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci 3:452–459

    Article  PubMed  Google Scholar 

  14. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    Article  PubMed  Google Scholar 

  15. Gibson UE, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6:995–1001

    PubMed  Google Scholar 

  16. Hartmann J, Blum R, Kovalchuk Y, Adelsberger H, Kuner R, Durand GM, Miyata M, Kano M, Offermanns S, Konnerth A (2004) Distinct roles of Gαq and Gα11 for Purkinje cell signaling and motor behavior. J Neurosci 24:5119–5130

    Article  PubMed  Google Scholar 

  17. Häusser M, Roth A (1997) Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J Physiol 501:77–95

    Article  PubMed  Google Scholar 

  18. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11:1026–1030

    Article  Google Scholar 

  19. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H (1994) Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12:1281–1289

    Article  PubMed  Google Scholar 

  20. Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y, et al (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR delta 2 mutant mice. Cell 81:245–252

    Article  PubMed  Google Scholar 

  21. Klein CA, Seidl S, Petat-Dutter K, Offner S, Geigl JB, Schmidt-Kittler O, Wendler N, Passlick B, Huber RM, Schlimok G, Baeuerle PA, Riethmüller G (2002) Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol 20:387–392

    Article  PubMed  Google Scholar 

  22. Komuro H, Yacubova E, Rakic P (2001) Mode and tempo of tangential cell migration in the cerebellar external granular layer. J Neurosci 21:527–540

    PubMed  Google Scholar 

  23. Komuro H, Yacubova E (2003) Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084–1098

    PubMed  Google Scholar 

  24. Lambolez B, Audinat E, Bochet P, Crepel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9:247–258

    Article  PubMed  Google Scholar 

  25. Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J (2001) Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. Embo J 20:5715–5724

    Article  PubMed  Google Scholar 

  26. Liss B (2002) Improved quantitative real-time RT-PCR for expression profiling of individual cells. Nucleic Acids Res 30:e89

    Article  PubMed  Google Scholar 

  27. Mallardo M, Deitinghoff A, Müller J, Goetze B, Macchi P, Peters C, Kiebler MA (2003) Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc Natl Acad Sci USA 100:2100–2105

    Article  PubMed  Google Scholar 

  28. Marandi N, Konnerth A, Garaschuk O (2002) Two-photon chloride imaging in neurons of brain slices. Pflügers Arch 445:357–365

    Article  PubMed  Google Scholar 

  29. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12:529–540

    Article  PubMed  Google Scholar 

  30. Osada T, Uehara H, Kim H, Ikai A (2003) mRNA analysis of single living cells. J Nanobiotechnol 1:2

    Article  Google Scholar 

  31. Piper M, Holt C (2004) RNA translation in axons. Annu Rev Cell Dev Biol 20:505–523

    Article  PubMed  Google Scholar 

  32. Plant T, Schirra C, Garaschuk O, Rossier J, Konnerth A (1997) Molecular determinants of NMDA receptor function in GABAergic neurones of rat forebrain. J Physiol (Lond) 499:47–63

    Google Scholar 

  33. Rasmussen R (2001) Quantification on the LightCycler. In: Meurer S, Wittwer C, Nakawara K (eds) Rapid cycle real-time PCR, methods and applications. Springer-Verlag, Berlin Heidelberg, pp 21–34

    Google Scholar 

  34. Rose CR, Kovalchuk Y, Eilers J, Konnerth A (1999) Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflügers Arch 439:201–207

    Article  PubMed  Google Scholar 

  35. Tkatch T, Baranauskas G, Surmeier DJ (2000) Kv4.2 mRNA abundance and A-type K+ current amplitude are linearly related in basal ganglia and basal forebrain neurons. J Neurosci 20:579–588

    PubMed  Google Scholar 

  36. Tsuzuki K, Lambolez B, Rossier J, Ozawa S (2001) Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons. J Neurochem 77:1650–1659

    Article  PubMed  Google Scholar 

  37. Vorndran C, Minta A, Poenie M (1995) New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes. Biophys J 69:2112–2124

    PubMed  Google Scholar 

  38. Whitcombe D, Theaker J, Guy SP, Brown T, Little S (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17:804–807

    Article  PubMed  Google Scholar 

  39. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ (1997) The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22:176–181

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Alexandra Lepier and Dr. John Davis for comments on earlier versions of the manuscript and I. Mühlhahn for technical assistance. The work was supported by grants from the DFG and the BMBF. Competing interests statement: The authors declare that they have no competing financial interests. This study was not financially supported by the companies selling reagents or instrumentation used in this approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Blum.

Additional information

Guylaine M. Durand and Nima Marandi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durand, G.M., Marandi, N., Herberger, S.D. et al. Quantitative single-cell RT-PCR and Ca2+ imaging in brain slices. Pflugers Arch - Eur J Physiol 451, 716–726 (2006). https://doi.org/10.1007/s00424-005-1514-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1514-3

Keywords

Navigation