Skip to main content
Log in

Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Cell shrinkage is a ubiquitous feature of programmed cell death (PCD), but whether it is an obligatory signalling event in PCD is unclear. Heat shock protein 70 (Hsp70) potently counteracts PCD in many cells, by mechanisms that are incompletely understood. In the present investigation, we found that severe hypertonic stress greatly diminished the viability of murine fibrosarcoma cells (WEHI-902) and immortalized murine embryonic fibroblasts (iMEFs). This effect was attenuated markedly by Hsp70 over-expression. To determine whether the protective effect of Hsp70 was mediated via an effect on volume regulatory ion transport, we compared regulatory volume decrease (RVD) and increase (RVI) in control WEHI-902 cells and after increasing Hsp70 levels by heat shock or over-expression (WEHI-912). Hsp70 levels affected neither RVD, RVI nor the relative contributions of the Na+/H+-exchanger (NHE1) and Na+,K+,2Cl-cotransporter (NKCC1) to RVI. Hypertonic stress induced caspase-3 activity in WEHI cells and iMEFs, an effect potentiated by Hsp70 in WEHI cells but inhibited by Hsp70 in iMEFs. Osmotic shrinkage-induced PCD was associated with Hsp70-inhibitable cysteine cathepsin release in iMEFs and attenuated by caspase and cathepsin inhibitors in WEHI cells. Treatment with TNF-α or the NHE1 inhibitor 5’-(N-ethyl-N-isopropyl)amiloride (EIPA) reduced the viability of WEHI cells further under isotonic and mildly, but not severely, hypertonic conditions. Thus, it is concluded that shrinkage-induced PCD involves both caspase- and cathepsin-dependent death mechanisms and is potently counteracted by Hsp70.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A,B
Fig. 2A–C
Fig. 3A–C
Fig. 4
Fig. 5A–D

Similar content being viewed by others

References

  1. Anbari K, Schultz RM (1993) Effect of sodium and betaine in culture media on development and relative rates of protein synthesis in preimplantation mouse embryos in vitro. Mol Reprod Dev 35:24–28

    CAS  PubMed  Google Scholar 

  2. Angelidis CE, Nova C, Lazaridis I, Kontoyannis D, Kollias G, Pagoulatos GN (1996) Overexpression of HSP70 in transgenic mice results in increased thermotolerance. Transgenics 2:111–117

    CAS  Google Scholar 

  3. Beck FX, Neuhofer W, Muller E (2000) Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol 279:F203–F215

    CAS  Google Scholar 

  4. Bortner CD, Cidlowski JA (1996) Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Physiol 271:C950–C961

    CAS  PubMed  Google Scholar 

  5. Bortner CD, Cidlowski JA (1998) A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol 56:1549–1559

    Article  CAS  PubMed  Google Scholar 

  6. Bortner CD, Hughes FM Jr, Cidlowski JA (1997) A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 272:32436–32442

    Google Scholar 

  7. Burg MB (2002) Response of renal inner medullary epithelial cells to osmotic stress. Comp Biochem Physiol A Mol Integr Physiol 133:661–666

    Article  PubMed  Google Scholar 

  8. Chen YX, O’Brien ER (2003) Ethyl isopropyl amiloride inhibits smooth muscle cell proliferation and migration by inducing apoptosis and antagonizing urokinase plasminogen activator activity. Can J Physiol Pharmacol 81:730–739

    Article  CAS  PubMed  Google Scholar 

  9. Fehrenbacher N, Gyrd-Hansen M, Poulsen B, Felbor U, Kallunki T, Boes M, Weber E, Leist M, Jaattela M (2004) Senzitization to the lysosomal death pathways upon immortalization and transformation. Cancer Res 64:5301–5310

    Google Scholar 

  10. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jaattela M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010

    Article  CAS  PubMed  Google Scholar 

  11. Franco DL, Nojek IM, Molinero L, Coso OA, Costas MA (2002) Osmotic stress sensitizes naturally resistant cells to TNF-alpha-induced apoptosis. Cell Death Differ 9:1090–1098

    Article  CAS  PubMed  Google Scholar 

  12. Galvez AS, Ulloa JA, Chiong M, Criollo A, Eisner V, Barros LF, Lavandero S (2003) Aldose reductase induced by hyperosmotic stress mediates cardiomyocyte apoptosis: differential effects of sorbitol and mannitol. J Biol Chem 278:38484–38494

    Article  CAS  PubMed  Google Scholar 

  13. Hoffmann EK, Dunham PB (1995) Membrane mechanisms and intracellular signalling in cell volume regulation. Int Rev Cytol 161:173–262

    CAS  PubMed  Google Scholar 

  14. Hoffmann EK, Pedersen SF (1998) Sensors and signal transduction in the activation of cell volume regulatory ion transport systems. Contrib Nephrol 123:50–78

    CAS  PubMed  Google Scholar 

  15. Hoffmann EK, Lambert IH, Simonsen LO (1986) Separate, Ca2+-activated K+ and Cl transport pathways in Ehrlich ascites tumor cells. J Membr Biol 91:227–244

    CAS  PubMed  Google Scholar 

  16. Ikari A, Nakano M, Kawano K, Suketa Y (2002) Up-regulation of sodium-dependent glucose transporter by interaction with heat shock protein 70. J Biol Chem 277:33338–33343

    Article  CAS  PubMed  Google Scholar 

  17. Jaattela M (1999) Heat shock proteins as cellular lifeguards. Ann Med 31:261–271

    CAS  PubMed  Google Scholar 

  18. Jaattela M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23:2746–2756

    Google Scholar 

  19. Jaattela M, Pinola M, Saksela E (1991) Heat shock inhibits the cytotoxic action of TNF-alpha in tumor cells but does not alter its noncytotoxic actions in endothelial and adrenal cells. Lymphokine Cytokine Res 10:119–125

    CAS  PubMed  Google Scholar 

  20. Jaattela M, Saksela K, Saksela E (1989) Heat shock protects WEHI-164 target cells from the cytolysis by tumor necrosis factors alpha and beta. Eur J Immunol 19:1413–1417

    CAS  PubMed  Google Scholar 

  21. Jaattela M, Wissing D, Kokholm K, Kallunki T, Egeblad M (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    Article  PubMed  Google Scholar 

  22. Khaled AR, Moor AN, Li A, Kim K, Ferris DK, Muegge K, Fisher RJ, Fliegel L, Durum SK (2001) Trophic factor withdrawal: p38 mitogen-activated protein kinase activates NHE1, which induces intracellular alkalinization. Mol Cell Biol 21:7545–7557

    Article  CAS  PubMed  Google Scholar 

  23. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  24. Lang F, Madlung J, Bock J, Lukewille U, Kaltenbach S, Lang KS, Belka C, Wagner CA, Lang HJ, Gulbins E, Lepple-Wienhues A (2000) Inhibition of Jurkat-T-lymphocyte Na+/H+-exchanger by CD95(Fas/Apo-1)-receptor stimulation. Pflugers Arch 440:902–907

    Article  CAS  PubMed  Google Scholar 

  25. Lang KS, Fillon S, Schneider D, Rammensee HG, Lang F (2002) Stimulation of TNF alpha expression by hyperosmotic stress. Pflugers Arch 443:798–803

    Article  CAS  PubMed  Google Scholar 

  26. Leist M, Jaattela M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  CAS  PubMed  Google Scholar 

  27. Maeno E, Ishizaki Y, Kanaseki T, Hazama A, Okada Y (2000) Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proc Natl Acad Sci USA 97:9487–9492

    Article  CAS  PubMed  Google Scholar 

  28. Matthews CC, Odeh HM, Feldman EL (1997) Insulin-like growth factor-I is an osmoprotectant in human neuroblastoma cells. Neuroscience 79:525–534

    Article  CAS  PubMed  Google Scholar 

  29. McLean LA, Roscoe J, Jorgensen NK, Gorin FA, Cala PM (2000) Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol 278:C676–C688

    CAS  Google Scholar 

  30. Neuhofer W, Muller E, Grunbein R, Thurau K, Beck FX (1999) Influence of NaCl, urea, potassium and pH on HSP72 expression in MDCK cells. Pflugers Arch 439:195–200

    Article  CAS  PubMed  Google Scholar 

  31. Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M (2000) Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA 97:7871–7876

    Article  CAS  PubMed  Google Scholar 

  32. Nylandsted J, Wick W, Hirt UA, Brand K, Rohde M, Leist M, Weller M, Jaattela M (2002) Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Res 62:7139–7142

    Google Scholar 

  33. Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Høyer-Hansen M, Weber E, Multhoff M, Rohde M, Jaattela M (2004) Heat shock protein 70 promotes tumor cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med (In Press)

  34. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol (Lond) 532:3–16

  35. Reshkin SJ, Bellizzi A, Caldeira S, Albarani V, Malanchi I, Poignee M, Alunni-Fabbroni M, Casavola V, Tommasino M (2000) Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J 14:2185–2197

    Article  CAS  PubMed  Google Scholar 

  36. Rich IN, Worthington-White D, Garden OA, Musk P (2000) Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na+/H+ exchanger. Blood 95:1427–1434

    CAS  PubMed  Google Scholar 

  37. Rosette C, Karin M (1996) Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science 274:1194–1197

    Article  CAS  PubMed  Google Scholar 

  38. Sheikh-Hamad D, Di Mari J, Suki WN, Safirstein R, Watts BA III, Rouse D (1998) p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin-Darby canine kidney cells. J Biol Chem 273:1832–1837

    Article  CAS  PubMed  Google Scholar 

  39. Shim EH, Kim JI, Bang ES, Heo JS, Lee JS, Kim EY, Lee JE, Park WY, Kim SH, Kim HS, Smithies O, Jang JJ, Jin DI, Seo JS (2002) Targeted disruption of hsp70.1 sensitizes to osmotic stress. EMBO Rep 3:857–861

    Article  CAS  PubMed  Google Scholar 

  40. Shrode LD, Tapper H, Grinstein S (1997) Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 29:393–399

    Article  CAS  PubMed  Google Scholar 

  41. Silva NL, Haworth RS, Singh D, Fliegel L (1995) The carboxyl-terminal region of the Na+/H+ exchanger interacts with mammalian heat shock protein. Biochemistry 34:10412–10420

    CAS  PubMed  Google Scholar 

  42. Terada Y, Inoshita S, Hanada S, Shimamura H, Kuwahara M, Ogawa W, Kasuga M, Sasaki S, Marumo F (2001) Hyperosmolality activates Akt and regulates apoptosis in renal tubular cells. Kidney Int 60:553–567

    Article  CAS  PubMed  Google Scholar 

  43. Thangaraju M, Sharma K, Liu D, Shen SH, Srikant CB (1999) Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. Cancer Res 59:1649–1654

    Google Scholar 

  44. Trimarchi JR, Liu L, Smith PJ, Keefe DL (2002) Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am J Physiol 282:C588–C594

    CAS  Google Scholar 

  45. Wu KL, Khan S, Lakhe-Reddy S, Wang L, Jarad G, Miller RT, Konieczkowski M, Brown AM, Sedor JR, Schelling JR (2003) Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE1 Na+/H+ exchanger. Am J Physiol 284:F829–F839

    CAS  Google Scholar 

  46. Xanthoudakis S, Nicholson DW (2000) Heat-shock proteins as death determinants. Nat Cell Biol 2:E163–E165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work presented above was supported by the Carlsberg Foundation (SFP, grant No. 990209/20-840), the Danish National Research Council (EKH, grant No. 21-01-0507), the Danish Medical Research Council (MJ), the Danish Cancer Research Foundation (JN), and the Danish Cancer Society (MJ and JN). The authors are grateful to Birgit Poulsen for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nylandsted, J., Jäättelä, M., Hoffmann, E.K. et al. Heat shock protein 70 inhibits shrinkage-induced programmed cell death via mechanisms independent of effects on cell volume-regulatory membrane transport proteins. Pflugers Arch - Eur J Physiol 449, 175–185 (2004). https://doi.org/10.1007/s00424-004-1332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1332-z

Keywords

Navigation