Skip to main content
Log in

Chloride transport in the renal proximal tubule

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The renal proximal tubule is responsible for most of the renal sodium, chloride, and bicarbonate reabsorption. Micropuncture studies and electrophysiological techniques have furnished the bulk of our knowledge about the physiology of this tubular segment. As a consequence of the leakiness of this epithelium, paracellular ionic transport—in particular that of Cl—is of considerable importance in this first part of the nephron. It was long accepted that proximal Cl reabsorption proceeds solely paracellularly, but it is now known that transcellular Cl transport also exists. Cl channels and Cl-coupled transporters are involved in transcellular Cl transport. In the apical membrane, Cl/anion (formate, oxalate and bicarbonate) exchangers represent the first step in transcellular Cl reabsorption. A basolateral Cl/HCO3 exchanger, involved in HCO3 reclamation, participates in the rise of intracellular Cl activity above its equilibrium value, and thus also contributes to the creation of an outwardly directed electrochemical Cl gradient across the cell membranes. This driving force favours Cl diffusion from the cell to the lumen and to the interstitium. In the basolateral membrane, the main mechanism for transcellular Cl reabsorption is a Cl conductance, but a Na+-driven Cl/HCO3 exchanger may also participate in Cl reabsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C
Fig. 2

Similar content being viewed by others

Notes

  1. As a consequence, an electrical event induced experimentally at the BL membrane (for example, a change in the basolateral membrane potential, consecutive to a peritubular ionic substitution) may not be a reliable reflection of the current flowing across the BL membrane resistance, because of the distortion induced by part of current flowing across the other conductive barriers of the epithelium. For the theoretical development of electrical equivalent circuit of PT epithelium, the reader is referred to [7, 8, 14, 79].

  2. The shunt pathway of PT is largely selective for Cl [7, 9, 86].

  3. It is interesting to note that the resistance values reported for the mammals are lower than those measured in amphibian: for example, the much lower shunt resistance in rat PT than in Necturus PT [15, 36] infers that for the same VTE, the paracellular current flow, and hence paracellular ionic transport, will be higher in the rat than in Necturus.

  4. In the early portion of PT, the favourable driving force for transepithelial Cl absorption is provided by the lumen-negative potential, and in the later PT by the transtubular Cl concentration gradient.

  5. In the text, “uphill” transport indicates the transmembrane transport of an ion against its electrochemical potential difference, as opposed to “downhill” transport (down the electrochemical potential difference).

  6. The presence of Cl/formate (or Cl/oxalate) exchange has not been addressed specifically in the amphibian PT. Indirect evidence indicates that the presence of such transport mechanism is unlikely: luminal DIDS increases αCl [1], which is the opposite effect of that expected in the case of a DIDS-sensitive apical Cl influx.

  7. Anionic substitutions for Cl may change cell membrane conductances other than GCl. This will result in differences between the permeability sequence of the membrane (established by measuring ΔVBL induced by various substitutive anions) and the conductance sequence of the membrane (established by testing the contribution of GCl to the global conductance of the membrane under the various experimental conditions represented by anionic substitution). For example, in Necturus PT, the permeability sequence for halide ions is F>Cl>Br>I, which is included in the Eisenman’s predicted sequence [35], and the membrane was more permeable to SCN, ClO4 and NO3 than to Cl. The membrane conductance sequence is: Cl≈BrO3<Br≤ClO3<I≈F<NO3<ClO4<SCN [10].

References

  1. Abdulnour-Nakhoul S, Boulpaep EL (1998) Transcellular chloride pathways in Ambystoma proximal tubule. J Membr Biol 166:15–35

    Article  CAS  PubMed  Google Scholar 

  2. Alpern RJ, Chambers M (1987) Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. Na-dependent and -independent modes. J Gen Physiol 89:581–598

    Article  CAS  PubMed  Google Scholar 

  3. Alpern RJ, Howlin KJ, Preisig PA (1985) Active and passive components of chloride transport in the rat proximal convoluted tubule J Clin Invest 76:1360–1366

    CAS  Google Scholar 

  4. Alper SL, Stuart-Tilley AK, Biemesderfer D, Shmulker BE, Brown D (1997) Immunolocalization of AE2 anion exchanger in rat kidney. Am J Physiol 273:F601–F617

    CAS  PubMed  Google Scholar 

  5. Alper SL, Darman RB, Chernova MN, Dahl NK (2002) The AE gene family of Cl/HCO3 exchangers. J Nephrol 15 (Suppl 5):S41–S53

    CAS  PubMed  Google Scholar 

  6. Ammann D, Lanter F, Steiner RA, Schulthess P, Shijo Y, Simon W (1981) Neutral carried based ion selective microelectrode for extra- and intracellular studies. Anal Chem 53:2267–2269

    CAS  PubMed  Google Scholar 

  7. Anagnostopoulos T (1973) Biionic potentials in the proximal tubule of Necturus kidney. J Physiol (Lond) 233:375–394

    Google Scholar 

  8. Anagnostopoulos T (1973) The partial conductances of limiting membranes in epithelial tissues. J Theor Biol 42:177–179

    CAS  PubMed  Google Scholar 

  9. Anagnostopoulos T (1975) Anion permeation in the proximal tubule of Necturus kidney: the shunt pathway. J Membr Biol 24:365–380

    CAS  PubMed  Google Scholar 

  10. Anagnostopoulos T (1977) Electrophysiological study of the antiluminal membrane in the proximal tubule of Necturus: effect of inorganic anions and SCN. J Physiol (Lond) 267:89–111

    Google Scholar 

  11. Anagnostopoulos T, Edelman A (1977) Electrophysiological study of bicarbonate effects on antiluminal membrane at the proximal tubule of Necturus kidney. J Physiol (Lond) 266:40P–41P

    Google Scholar 

  12. Anagnostopoulos T, Planelles G (1979) Organic anion permeation at the proximal tubule of Necturus: an electrophysiological study of the peritubular membrane. Pflugers Arch 381:231–239

    CAS  PubMed  Google Scholar 

  13. Anagnostopoulos T, Planelles G (1987) Cell and luminal activities of chloride, potassium, sodium and protons in the late distal tubule of Necturus kidney. J Physiol (Lond) 393:73–89

    Google Scholar 

  14. Anagnostopoulos T, Velu E (1974) Electrical resistance of cell membranes in Necturus kidney. Pflugers Arch 346:327–339

    CAS  PubMed  Google Scholar 

  15. Anagnostopoulos T, Teulon J, Edelman A (1980) Conductive properties of the proximal tubule in Necturus kidney. J Gen Physiol 75:553–587

    Article  CAS  PubMed  Google Scholar 

  16. Anagnostopoulos T, Edelman A, Planelles G, Teulon J, Thomas SR (1983) Transport du chlore dans le tube proximal. Ses effets sur l’absorption hydroélectrolytique. J Physiol (Paris) 79:132–138

    Google Scholar 

  17. Aronson PS, Giebisch G (1997) Mechanisms of chloride transport in the proximal tubule. Am J Physiol 273:F179–192

    CAS  PubMed  Google Scholar 

  18. Baum M, Quigley R (2004) Thyroid hormone modulates rabbit proximal straight tubule paracellular permeability. Am J Physiol 286:F477–F482

    Article  CAS  Google Scholar 

  19. Belachgar F, Hulin P, Anagnostopoulos T, Planelles G (1994) Triflocin, a novel inhibitor for the Na-HCO3 symport in the proximal tubule. Br J Pharmacol 112:465–470

    CAS  PubMed  Google Scholar 

  20. Benharouga M, Fritsch J, Banting G, Edelman A (1997) Properties of chloride-conductive pathways in rat kidney cortical and outer-medulla brush-border membranes—inhibition by anti-(cystic fibrosis transmembrane regulator) mAbs. Eur J Biochem 246:367–372

    CAS  PubMed  Google Scholar 

  21. Bomsztyk K (1986) Chloride transport by rat proximal tubule: effects of bicarbonate absorption. Am J Physiol 250:F1046–F1056

    CAS  PubMed  Google Scholar 

  22. Bott PA (1962) Micropuncture study of renal excretion of water, K, Na and Cl in Necturus Am J Physiol 203:662–666

    Google Scholar 

  23. Bouyer P, Paulais M, Cougnon M, Hulin P, Anagnostopoulos T, Planelles G (1998) Extracellular ATP raises cytosolic calcium and activates basolateral chloride conductance in Necturus proximal tubule. J Physiol (Lond) 510:535–548

    Google Scholar 

  24. Bürckhardt BC, Sato K, Frömter E (1984) Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. I. Basic observations. Pflugers Arch 401:34–42

    PubMed  Google Scholar 

  25. Casey JR, Reithmeier RA (1998) Anion exchangers in the red cell and beyond. Biochem Cell Biol 76:709–713

    Article  CAS  PubMed  Google Scholar 

  26. Cassola AC, Mollenhauer M, Frömter E (1983) The intracellular chloride activity of rat kidney proximal tubular cells. Pflugers Arch 399:259–265

    CAS  PubMed  Google Scholar 

  27. Castillo JE, Martinez-Anso E, Malumbres R, De Alava E, Garcia C, Medina JF, Prieto J (2000) In situ localization of anion exchanger 2 in the human kidney. Cell Tissue Res 299:281–287

    CAS  PubMed  Google Scholar 

  28. Chase SW (1923) The mesonephros and urogenital ducts of Necturus maculosus, J Morphol 37:457–532

    Google Scholar 

  29. Choi I, Kobayashi C, Jacovich M, Boron WF (2001) Structure function analysis of an electroneutral Na/HCO3 cotransporter (NBCn1) (abstract). FASEB J 15:A446

    Article  Google Scholar 

  30. Crawford I, Maloney PC, Zeitlin PL, Guggino WB, Hyde SC, Turley H, Gatter KC, Harris A, Higgins CF (1991) Immunocytochemical localization of the cystic fibrosis gene product CFTR. Proc Natl Acad Sci USA 88:9262–9266

    CAS  PubMed  Google Scholar 

  31. Devuyst O, Guggino WB (2002) Chloride channels in the kidney: lessons learned from knockout animals. Am J Physiol 283:F1176–F1191

    CAS  Google Scholar 

  32. Devuyst O, Burrow CR, Schwiebert EM, Guggino WB, Wilson PD (1996) Developmental regulation of CFTR expression during human nephrogenesis. Am J Physiol 271:F723–F735

    CAS  PubMed  Google Scholar 

  33. Edelman A, Anagnostopoulos T (1976) Transepithelial potential difference in the proximal tubule of Necturus kidney. Pflugers Arch 363:105–111

    CAS  PubMed  Google Scholar 

  34. Edelman A, Bouthier M, Anagnostopoulos T (1981) Chloride distribution in the proximal convoluted tubule of Necturus kidney. J Membr Biol 62:7–17

    CAS  PubMed  Google Scholar 

  35. Eisenman G (1965) Some elementary factors involved in specific ion permeation. Proc Int Union Physiol Sci 4:489–506

    Google Scholar 

  36. Frömter E (1976) Magnitude and significance of the paracellular shunt path in the rat kidney proximal tubule. In: Kramer M, Lauterbach F (eds) Intestinal permeation. Excerpta Medica, Amsterdam, pp 393–405

  37. Frömter E (1982) Electrophysiological analysis of rat renal sugar and amino-acid transport. I Basic phenomena. Pflugers Arch 393:179–189

    PubMed  Google Scholar 

  38. Frömter E, Gessner K (1974) Free-flow potential profile along rat kidney proximal tubule. Pflugers Arch 351:69–83

    PubMed  Google Scholar 

  39. Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenologic description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney. Pflugers Arch 343:189–220

    PubMed  Google Scholar 

  40. Gögelein H, Pfannmüller B (1989) The nonselective cation channel in the basolateral membrane of rat exocrine pancreas. Inhibition by 3′,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC) and activation by stilbene disulfonates. Pflugers Arch 413:287–298

    PubMed  Google Scholar 

  41. Gottschalk CW (1963) Renal tubular function: lessons from micropuncture. Harvey Lecture 58:99–124

    CAS  Google Scholar 

  42. Green R, Bishop JHV, Giebisch G (1979) Ionic requirements of proximal tubular sodium transport. III Selective luminal anion substitution. Am J Physiol 236 F268–F277

    Google Scholar 

  43. Grichtchenko, II, Choi I, Zhong X, Bray-Ward P, Russell JM, Boron WF (2001) Cloning, characterization, and chromosomal mapping of a human electroneutral Na+-driven Cl-HCO3 exchanger. J Biol Chem 276:8358–8363

    Article  CAS  PubMed  Google Scholar 

  44. Guggino WB, Boulpaep EL, Giebisch G (1982) Electrical properties of chloride transport across the Necturus proximal tubule. J Membr Biol 65:185–196

    CAS  PubMed  Google Scholar 

  45. Guggino WB, London R, Boulpaep EL, Giebisch G (1983) Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: dependence on bicarbonate and sodium. J Membr Biol 71:227–240

    CAS  PubMed  Google Scholar 

  46. Günther W, Piwon N, Jentsch TJ (2003) The ClC5-chloride channel knock-out mouse—an animal model for Dent’s disease. Pflugers Arch 445:456–462

    PubMed  Google Scholar 

  47. Györy AZ (1971) Reexamination of the split drop method as applied to kidney tubules. Pflugers Arch 324:328–343

    PubMed  Google Scholar 

  48. Hediger MA, Romero MF, Peng J-B, Rolf A, Takanaga H, Bruford EA (2004) The ABCs of solute carries: physiological, pathological and therapeutic implications of human transport proteins. Pflugers Arch 4447:465–468

    Google Scholar 

  49. Humphreys BD, Chernova MN, Jiang L, Zhang Y, Alper SL (1997) NH4Cl activates AE2 anion exchanger in Xenopus oocytes at acidic pHi. Am J Physiol 272:C1232–40

    CAS  PubMed  Google Scholar 

  50. Ishibashi K, Sasaki S, Yoshiyama N (1988) Intracellular chloride activity of rabbit proximal straight tubule perfused in vitro. Am J Physiol 255:F49–F56

    CAS  PubMed  Google Scholar 

  51. Ishibashi K, Rector FC Jr, Berry CA (1990) Chloride transport across the basolateral membrane of rabbit proximal convoluted tubules. Am J Physiol 258:F1569–F1578

    CAS  PubMed  Google Scholar 

  52. Ishibashi K, Rector FC Jr, Berry CA (1993) Role of Na-dependent Cl/HCO3 exchange in basolateral Cl transport of rabbit proximal tubules Am J Physiol 264:F251–F258

    Google Scholar 

  53. Jacobson HR (1979) Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J Clin Invest 63:410–418

    CAS  PubMed  Google Scholar 

  54. Jentsch TJ, Stein V, Weinreich F, Zdebick A (2002) A. Molecular structure and physiological function of chloride channels. Physiol Rev 82:503–568

    CAS  PubMed  Google Scholar 

  55. Jiang Z, Grichtchenko Il, Boron WF, Aronson PS (2002) specificity of anion exchanger mediated by mouse Slc26A6. J Biol Chem 277:33963–33967

    Article  CAS  PubMed  Google Scholar 

  56. Karniski LP, Wang T, Everett LA, Green ED, Giebisch G, Aronson PS (2002) Formate-stimulated NaCl Absorption in the proximal tubule is independent of the pendrin protein Am J Physiol 283:F952–F956

    Google Scholar 

  57. Kibble JD, Balloch KJ, Neal AM, Hill C, White S, Robson L, Green R, Taylor CJ (2001) Renal proximal tubule function is preserved in Cftrtm2cam ΔF508 cystic fibrosis mice. J Physiol (Lond) 532:449–457

    Google Scholar 

  58. Knauf F, Yang CL, Thompson RB, Mentone SA, Giebisch G, Aronson PS (2001) Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule Proc Natl Acad Sci USA 98:94825–9430

    Google Scholar 

  59. Ko SB, Luo X, Hager H, Rojeck A, Choi JY, Licht C, Susuki M, Muallem S, Nielsen S, Ishibashi K (2002) AE4 is a DIDS-sensitive Cl/HCO3 exchanger in the basolateral membrane of the renal CCD and the SMG duct. Am J Physiol 283:C1206–C1218

    CAS  Google Scholar 

  60. Kondo Y, Frömter E (1987) Axial heterogeneity of sodium-bicarbonate cotransport in proximal straight tubule of rabbit kidney. Pflugers Arch 410:481–486

    CAS  PubMed  Google Scholar 

  61. Kondo Y, Frömter E (1990) Evidence of chloride/bicarbonate exchange mediating bicarbonate efflux from S3 segments of rabbit renal proximal tubule. Pflugers Arch 415:726–733

    CAS  PubMed  Google Scholar 

  62. Kondo Y, Bührer T, Frömter E, Simon W (1989) A new double-barreled, ionophore-based microelectrode for chloride ions. Pflugers Arch 414:663–668

    CAS  PubMed  Google Scholar 

  63. Kopito RR, Lee BS, Simmons DM, Lindsey AE, Morgans CW, Scheider K (1989) Regulation of intracellular pH by a neuronal homolog of the erythrocyte anion exchanger. Cell 59:927–937

    Article  CAS  PubMed  Google Scholar 

  64. Kurtz I, Nagami G, Yanagawa N, Li L, Emmons C, Lee I (1994) Mechanism of apical and basolateral Na-independent Cl/base exchange in the rabbit superficial proximal tubule. J Clin Invest 94:173–183

    CAS  PubMed  Google Scholar 

  65. Lapointe JY, Laprade R, Cardinal J (1984) Transepithelial and cell membrane electrical resistance of the rabbit proximal convoluted tubule. Am J Physiol 247:F647–F649

    Google Scholar 

  66. Litchfield JB, Bott PA (1962) Micropuncture study of renal excretion of water, K+, Na+ and Cl in the rat. Am J Physiol 203:667–670

    CAS  PubMed  Google Scholar 

  67. Liu FY, Cogan MG (1984) Axial heterogeneity in the rat proximal tubule. Bicarbonate, chloride and water transport. Am J Physiol 247:F816–F821

    CAS  PubMed  Google Scholar 

  68. Liu FY, Cogan MG (1987) Kinetics of bicarbonate transport in the early proximal convoluted tubule. Am J Physiol 253:F912–F916

    CAS  Google Scholar 

  69. London R, Cohen B, Guggino WB, Giebisch G (1983) Regulation of intracellular chloride activity during perfusion with hypertonic solutions in the Necturus proximal tubule. J Membr Biol 75:253–258

    CAS  PubMed  Google Scholar 

  70. Lu J, Virrki LV, Choi I, Boulpaep EL, Boron WF (2003) the effect of mutations on K559 and K552, within the KMIK motif of TM5, on the DIDS sensitivity of the electrogenic Na/HCO3 cotransporter from human kidney (hNBCe1-A) (abstract). FASEB J A221

  71. Maulet Y, Lambert RC, Mykita S, Mouton J, Partisani M, Bailly Y, Bombarde G, Feltz A (1999) Expression and targeting to the plasma membrane of xClC-K, a chloride channel specifically expressed in distinct tubule segments of Xenopus laevis kidney. Biochem J 340:737–743

    Article  CAS  PubMed  Google Scholar 

  72. Mount DB, Romero MF (2004) The SLC gene family of multifunctional anions exchangers. Pflugers Arch 447:710–721

    Article  CAS  PubMed  Google Scholar 

  73. Mount DB, Mercado A, Song L, Xu J, George AL Jr, Delpire E, Gamba G (1999) Cloning and characterization of KCC3 and KCC4, new members of the cation-chloride cotransporter gene family. J Biol Chem 23:16355–16362

    Article  Google Scholar 

  74. Nakhoul NL, Chen LK, Boron WF (1990) Intracellular pH regulation in rabbit S3 proximal tubule: basolateral Cl-HCO3 exchange and Na-HCO3 cotransport. Am J Physiol 258:F371–F381

    CAS  PubMed  Google Scholar 

  75. Nascimento, DS, Resi CU, Goldenberg RC, Ortiga-Carvalho TM, Pazos-Moura CC, Guggino SE, Guggino WB, Morales MM (2003) Estrogen modulates ClC-2 chloride channel gene expression in rat kidney. Pflugers Arch 446:593–599

    Article  CAS  PubMed  Google Scholar 

  76. Neumann KH, Rector FC Jr (1976) Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney: role of chloride concentration gradients. J Clin Invest 58:1110–1118

    CAS  PubMed  Google Scholar 

  77. Nilius B, Eggermont J, Voets T, Droogmans G (1996) Volume-activated Cl channels. Gen Pharmacol 27:1131–1140

    Article  CAS  PubMed  Google Scholar 

  78. Piwon N, Günther W, Schawke R, Bölsl MR, Jentsch TJ (2000) ClC-5 Cl channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373

    Article  CAS  PubMed  Google Scholar 

  79. Planelles G, Teulon J, Anagnostopoulos T (1981) The effects of barium on the electrical properties of the basolateral membrane in proximal tubule. Naunyn Schmiedeberg’s Arch Pharmacol 318:135–141

    Google Scholar 

  80. Planelles G, Moreau K, Anagnostopoulos T (1983) Reinvestigation of the transepithelial PD in the proximal tubule of Necturus kidney. Pflugers Arch 396:41–48

    CAS  PubMed  Google Scholar 

  81. Planelles G, Kurkdjian A, Anagnostopoulos T (1984) Cell and luminal pH in the proximal tubule of Necturus kidney. Am J Physiol 247:F932–F938

    CAS  PubMed  Google Scholar 

  82. Planelles G, Thomas SR, Anagnostopoulos T (1993) Change in the apparent stoichiometry of proximal-tubule Na+-HCO3 cotransport upon experimental reversal of its orientation. Proc Natl Acad Sci USA:7406–7410

    Google Scholar 

  83. Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387:409–413

    Article  CAS  PubMed  Google Scholar 

  84. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3 transporters. Pflugers Arch 447:495–509

    Article  CAS  PubMed  Google Scholar 

  85. Sasaki S, Yoshiyama N (1988) Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange. J Clin Invest 81:1004–1011

    CAS  PubMed  Google Scholar 

  86. Schafer JA, Patlak CS, Andreoli TE (1975) A component of fluid absorption linked to passive ion flows in the superficial pars recta. J Gen Physiol 66:445–471

    Article  CAS  PubMed  Google Scholar 

  87. Schild LP, Giebisch G, Karniski LP, Aronson PS (1987) Effect of formate on volume reabsorption in the proximal tubule J Clin Invest 79:32–38

    CAS  Google Scholar 

  88. Schroder UH, Frömter E (1995) Characterization of two distinct Cl conductances in fused human respiratory epithelial cells. II. Relation to cystic fibrosis gene product. Pflugers Arch 430:257–264

    CAS  PubMed  Google Scholar 

  89. Segal AS, Boulpaep EL (1992) cAMP-activated chloride channel on the basolateral membrane of renal proximal tubule (abstract). J Am Soc Nephrol 3:819

    Google Scholar 

  90. Segal AS, Geibel JP, Boulpaep EL (1993) A chloride channel resembling CFTR on the basolateral membrane of rabbit renal proximal tubule (abstract). J Am Soc Nephrol 4:879

    Google Scholar 

  91. Seki G, Frömter E (1990) The chloride/base exchanger in the basolateral cell membrane of rabbit renal proximal tubule requires bicarbonate to operate. Pflugers Arch 417:37–41

    CAS  PubMed  Google Scholar 

  92. Seki G, Frömter E (1992) Acetazolamide inhibition of basolateral base exit in rabbit renal proximal tubule S2 segment. Pflugers Arch 422:60–65

    CAS  PubMed  Google Scholar 

  93. Seki G, Taniguchi S, Uwatoko S, Suzuki K, Kurokawa K (1993) Effect of parathyroid hormone on acid/base transport in rabbit proximal S3 segment. Pflugers Arch 423:7–13

    CAS  PubMed  Google Scholar 

  94. Seki G, Taniguchi S, Uwatoko S, Suzuki K, Kurokawa K (1993) Evidence for conductive Cl pathway in the basolateral membrane of rabbit renal proximal tubule S3 segment. J Clin Invest 92:1229–1235

    CAS  PubMed  Google Scholar 

  95. Seki G, Taniguchi S, Uwatoko S, Suzuki K, Kurokawa K (1995) Activation of the basolateral Cl conductance by cAMP in rabbit renal proximal tubule S3 segments. Pflugers Arch 430:88–95

    CAS  PubMed  Google Scholar 

  96. Seki G, Yamada H, Taniguchi S, Uwatoko S, Suzuki K, Kurokawa K (1997) Mechanism of anion permeation in the basolateral membrane of isolated rabbit renal proximal tubule S3 segment. Am J Physiol 272:C837–C846

    CAS  PubMed  Google Scholar 

  97. Sheu J, Quigley R, Baum M (1995) Heterogeneity of chloride/base exchange in rabbit superficial and juxtamedullary proximal convoluted tubules. Am J Physiol 268:F847–F853

    CAS  PubMed  Google Scholar 

  98. Spring KR, Kimura G (1978) Chloride reabsorption by renal proximal tubules of Necturus. J Membr Biol 38:233–254

    CAS  PubMed  Google Scholar 

  99. Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat CLC-5, a chloride channel related to kidney disease. J Biol Chem 270:31172–31177

    Article  CAS  PubMed  Google Scholar 

  100. Suzuki M, Morita T, Hanaoka K, Kawaguchi Y, Sakai O (1991) A Cl channel activated by parathyroid hormone in rabbit renal proximal tubule cells. J Clin Invest 88:735–742

    CAS  PubMed  Google Scholar 

  101. Uchida S (2000) In vivo role of CLC chloride channels in the kidney. Am J Physiol 279:F802–F808

    CAS  Google Scholar 

  102. Uchida S, Sasaki S, Furukawa T, Hiraoka M, Imai T, Hirata Y, Marumo F (1993) Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J Biol Chem 268:3821–3824

    CAS  PubMed  Google Scholar 

  103. Virkki LV, Choi I, Davis BA, Boron WF (2003) Cloning of a Na+-driven exchanger from squid giant fiber lobe. Am J Physiol 285:C771–C780

    CAS  Google Scholar 

  104. Walker JL, Brown HM (1977) Intracellular ionic activity measurements in nerve and muscles. Physiol Rev 57:729–778

    CAS  PubMed  Google Scholar 

  105. Wang CZ, Yano H, Nagashima K, Seino S (2000) The Na+-driven Cl/HCO3 exchanger. Cloning, tissue distribution, and functional characterization. J Biol Chem 275:35486–35490

    Article  CAS  PubMed  Google Scholar 

  106. Wang T, Giebisch G, Aronson PS (1992) Effects of formate and oxalate on volume absorption in rat proximal tubule Am J Physiol 263:F37–F42

    CAS  Google Scholar 

  107. Wang T, Agulian SK, Giebisch G, Aronson PS (1993) Effects of formate and oxalate on chloride absorption in rat distal tubule. Am J Physiol 264:F730–F736

    CAS  PubMed  Google Scholar 

  108. Wang T, Segal AS, Giebisch G, Aronson PS (1995) Stimulation of chloride transport by cAMP in rat proximal tubules. Am J Physiol 268:F204–F210

    CAS  PubMed  Google Scholar 

  109. Wang T, Egbert AL Jr, Abbiati T, Aronson PS, Giebisch G (1996) Mechanisms of stimulation of proximal tubule chloride transport by formate and oxalate. Am J Physiol 271:F446–F450

    CAS  PubMed  Google Scholar 

  110. Wang T, Yang C-L, Abbiati T, Schull GE, Giebisch G, Aronson PS (2001) Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule Am J Physiol 281:F228–F292

    Google Scholar 

  111. Wang W, Messner G, Oberleithner H, Lang F, Deetjen P (1984) The effect of ouabain on intracellular activities of K+, Na+, Cl, H+ and Ca2+ in proximal tubules of frog kidney. Pflugers Arch 401:6–13

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge S.R. Thomas for helpful discussion, and A. Edelman and J. Teulon for their encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle Planelles.

Additional information

This review is dedicated to Takis Anagnostopoulos, in memoriam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Planelles, G. Chloride transport in the renal proximal tubule. Pflugers Arch - Eur J Physiol 448, 561–570 (2004). https://doi.org/10.1007/s00424-004-1309-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1309-y

Keywords

Navigation