Skip to main content
Log in

Cardiovascular rhythms in the 0.15-Hz band: common origin of identical phenomena in man and dog in the reticular formation of the brain stem?

  • Adaptation, Biorhythms
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Selected examples from experiments in humans and dogs with time series of reticular neurons, respiration, arterial blood pressure and cutaneous forehead blood content fluctuations were analysed using multiscaled time-frequency distribution, post-event-scan and pointwise transinformation. We found in both experiments a “0.15-Hz rhythm” exhibiting periods of spindle waves (increasing and decreasing amplitudes), phase synchronized with respiration at 1:2 and 1:1 integer number ratios. At times of wave-epochs and n:m phase synchronization, the 0.15-Hz rhythm appeared in heart rate and arterial blood pressure. As phase synchronization of the 0.15-Hz rhythm with respiration was established at a 1:1 integer number ratio, all cardiovascular-respiratory oscillations were synchronized at 0.15 Hz. Analysis of a canine experiment supplied evidence that the emergence of the 0.15-Hz rhythm and n:m phase synchronization appears to result from a decline in the level of the general activity of the organism associated with a decline in the level of activity of reticular neurons in the lower brainstem network. These findings corroborate the notion of the 0.15-Hz rhythm as a marker of the “trophotropic mode of operation” first introduced by W.R. Hess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2 A
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. He wrote plainly: “Also in the case of heart rate rhythmicity such a rigid scheme cannot cope with the complex and variable interactions between the different rhythms.”

  2. In the literature, such neuronal subpopulations are also designated by other authors as “transient neuronal assemblies” (see e.g. Lindsey et al. 1994; Singer 1998). In this publication, we prefer the term “dynamically organized neuronal subpopulations” as used in our publications since 1980.

References

  • Barman SM, Gebber GL (1976) Basis for synchronization of sympathetic and phrenic nerve discharges. Am J Physiol 231:1601–1607

    CAS  PubMed  Google Scholar 

  • Berntson GG, Micco DJ (1976) Organization of brainstem behavioral system. Brain Res Bull1:471–483

    Google Scholar 

  • Braverman IM (1997) The cutaneous microcirculation: ultrastructure and microanatomical organization. Microcirculation 4:329–340

    CAS  PubMed  Google Scholar 

  • Cenys A, Lasiene G, Pyragas K (1991) Estimation of interrelation between chaotic observables. Physica D 52:332–337

    Article  Google Scholar 

  • Cohen L (1989) Time-frequency distributions—a review. Proc IEEE 77:941–981

    Article  Google Scholar 

  • Drummond PD (1995) Mechanisms of physiological gustatory sweating and flushing in the face. J Auton Nerv Syst 52:117–124

    Article  CAS  PubMed  Google Scholar 

  • Ebert D (1986) Physiologische Aspekte des Yoga und der Meditation. Gustav Fischer, Stuttgart

  • Eckberg DL (1997) Sympathovagal balance: a critical appraisal. Circulation 96:3224–3232

    CAS  PubMed  Google Scholar 

  • Eckberg DL (1998) Sympathovagal balance: a critical appraisal. Reply. Circulation 98:2643–2644

    CAS  Google Scholar 

  • Flatten G, Schiepek G, Hansch D, Perlitz V, Petzold ER (2003) Die Wirkung von traumatischem Stress auf biopsychische Selbstorganisationsprozesse; ein Beitrag zum Verständnis der Posttraumatischen Belastungsstörung aus der Perspektive der Synergetik. Psychotherapie 48:31–39

    Article  Google Scholar 

  • Gebber GL (1980) Central oscillators responsible for sympathetic nerve discharge. Am J Physiol 239:H143–H155

    CAS  PubMed  Google Scholar 

  • Gel’fand IM, Yaglom AM (1959) Calculation of the amount of information about a random function contained in another such function. Am Math Soc Transl 12:199–246

    Google Scholar 

  • Haken H (1977) Synergetics. Springer, Berlin Heidelberg New York

  • Harper RM, Sieck GC (1980) Discharge correlations between neurons in the nucleus parabrachialis medialis during sleep-waking states. Brain Res 199:343–358

    Article  CAS  PubMed  Google Scholar 

  • Herrigel E (1982) Zen in der Kunst des Bogenschießens. O.W. Barth bei Scherz, Berne

  • Hess WR (1948) Die funktionelle Organisation des vegetativen Nervensystems. Benno Schwabe, Basel

  • Hess WR (1949) Das Zwischenhirn. Benno Schwabe, Basel

  • Hess WR (1954) Das Zwischenhirn 2nd Edn. Benno Schwabe, Basel

  • Hess WR (1957) Die Formatio reticularis des unteren Hirnstammes im verhaltensphysiologischen Aspekt. Arch Psychiatr Nervenkr 196:329–336

    CAS  Google Scholar 

  • Holst E von (1939) Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalysen. Erg Physiol 42:228–306

    Google Scholar 

  • Izumi H (1999) Nervous control of blood flow in the orofacial region. Pharm Ther 81:141–161

    Article  CAS  Google Scholar 

  • Jacobs GD, Lubar JF (1989) Spectral analysis of the central nervous system effects of the relaxation response elicited by autogenic training. Behav Med 15:125–132

    CAS  PubMed  Google Scholar 

  • Kilmer W, McCulloch WS (1969) The reticular formation command and control system. In: Leibovic KN (ed) Information processing in the nervous system. Springer, Berlin Heidelberg New York, pp 297–307

  • Koch E (1932) Die Irradiation der pressorischen Kreislaufreflexe. Klin Wschr 2:225–227

    Google Scholar 

  • Koepchen HP (1969) Vegetative-somatic relationships in single neurone activity in the lower brain stem. In: Evans CR, Mulholland TB (eds) Attention in neurophysiology. Butterworths, London, pp 83–99

  • Koepchen HP (1991) Physiology of rhythms and control systems: an integrative approach. In: Haken H, Koepchen HP (eds) Rhythms in physiological systems (Synergetics series, vol. 55). Springer, Berlin Heidelberg New York, pp. 3–20

  • Koepchen HP, Langhorst P (1967) Verbessertes Verfahren zur Einführung “reitender” Mikroelektroden ins Gewebe. Pflügers Arch 294:65–67

    CAS  Google Scholar 

  • Koepchen HP, Langhorst P, Seller H (1975) The problem of identification of autonomic neurons in the lower brain stem. Brain Res 87:375–393

    Article  CAS  PubMed  Google Scholar 

  • Lambertz M, Langhorst P (1995) Cardiac rhythmic patterns in neuronal activity are related to the firing rate of the neurons. I. Brainstem reticular neurons of dogs. J Auton Nerv Syst 51:153–163

    Article  CAS  PubMed  Google Scholar 

  • Lambertz M, Langhorst P (1998) Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. J Auton Nerv Syst 68:58–77

    Article  CAS  PubMed  Google Scholar 

  • Lambertz M, Vandenhouten R, Grebe R, Langhorst P (2000) Phase transitions in the common brainstem and related systems investigated by nonstationary time series analysis. J Auton Nerv Syst 78:141–157

    Article  CAS  PubMed  Google Scholar 

  • Lambertz M, Vandenhouten R, Langhorst P (2003) Transiente Kopplungen von Hirnstammneuronen mit Atmung, Herz-Kreislauf-System und EEG. Ihre Bedeutung für Ordnungsübergänge in der Psychotherapie. In: Schiepek G (ed) Neurobiologie der Psychotherapie. Schattauer, Stuttgart, pp 302–324

  • Langhorst P, Werz M (1974) Concept of functional organization of the brain stem “cardiovascular center”. In: Umbach W, Koepchen HP (eds) Central rhythmic and regulation. Hippokrates, Stuttgart, pp 238–255

  • Langhorst P, Schulz B, Lambertz M, Schulz G, Camerer H (1980) Dynamic characteristics of the “unspecific brain stem system”. In: Koepchen HP, Hilton SM, Trzebski A (eds) Central interaction between respiratory and cardiovascular control systems. Springer, Berlin Heidelberg New York, pp 30–41

  • Langhorst P, Schulz B, Schulz G, Lambertz M (1983) Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighboring neurons influenced by cardiovascular and respiratory afferents. J Auton Nerv Syst 9:411–432

    Article  CAS  PubMed  Google Scholar 

  • Langhorst P, Schulz G, Lambertz M (1984) Oscillating neuronal network of the “common brainstem system”. In: Miyakawa K, Koepchen HP, Polosa C (eds) Mechanisms of blood pressure waves. Japan Sci Soc Press, Tokyo/Springer, Berlin Heidelberg New York, pp 257–275

  • Langhorst P, Lambertz M, Schulz G (1986) Assessment of rhythmicity in the visceral nervous system. In: Lown B, Malliani A, Prosdocimi M (eds) Neuronal mechanisms and cardiovascular disease (Fidia research series vol. 5). Liviana Press/Springer, Padua, pp. 133–144

  • Langhorst P, Lambertz M, Kluge W, Rittweger J (1992) Different modes of dampening influence from baroreceptors are determined by the functional organization of the NTS neuronal network. J Auton Nerv Syst 41:141–156

    Article  CAS  PubMed  Google Scholar 

  • Langhorst P, Schulz BG, Seller H, Koepchen HP (1996) Convergence of visceral and somatic afferents on single neurons in the reticular formation of the lower brain stem in dogs. J Auton Nerv Syst 57:149–157

    Article  CAS  PubMed  Google Scholar 

  • Lindsey BG, Segers LS, Morris KF, Hernandez YM, Saporta S, Shannon R (1994) Distributed actions and dynamic associations in respiratory-related neuronal assemblies of the ventrolateral medulla and brain stem midline. Evidence from spike train analysis. J Neurophysiol 72:1830–1851

    CAS  PubMed  Google Scholar 

  • Lossius K, Eriksen M (1995) Spontaneous flow waves detected by laser Doppler in human skin. Microvasc Res 50:94–104

    Article  CAS  PubMed  Google Scholar 

  • Malpas SC (2002) Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol 282:H6–H20

    CAS  Google Scholar 

  • Morlet J, Arehs G, Fourgeau I, Giard D (1982) Wave propagation and sampling theory. Geophysics 47:203–236

    Article  Google Scholar 

  • Moruzzi G (1958) The functional significance of the ascending reticular system. Arch Ital Biol 96:17–28

    Google Scholar 

  • Mück-Weymann M (2000) Autonome Funktionskreise in Psychosomatik und Psychiatrie: Nicht-invasives Biomonitoring in der Psychopharmakotherapie. Hans Jacobs, Lage

    Google Scholar 

  • Perlitz V, Schmid-Schönbein H, Schulte A, Dolgner J, Petzold E, Kruse W (1995) Effektivität des Autogenen Trainings. Therapiewoche 26:1536–1544

    Google Scholar 

  • Perlitz V, Cotuk B, Haberstock S, Petzold ER (2003) Selbstorganisation kutaner Perfusionsrhythmik bei therapeutisch induzierter psychovegetativer Entspannung. In: Schiepek G (ed) Neurobiologie der Psychotherapie. Schattauer, Stuttgart, pp 325–343

  • Perlitz V, Cotuk B, Schiepek G, Sen A, Haberstock S, Schmid-Schönbein H, Petzold ER, Flatten G (2004) Synergetik der hypnoiden Relaxation. Psychother Psych Med 54:1–9

    Google Scholar 

  • Podgoreanu M, Stout RG, El-Moalem H, Silverman DG (2002) Synchronous rhythmical vasomotion in the human cutaneous microvasculature during nonpulsatile cardiopulmonary bypass. Anesthesiology 97:1110–1117

    Article  PubMed  Google Scholar 

  • Pompeiano O (1973) Reticular Formation. In: Iggo A (ed) Somatosensory system (Handbook of sensory physiology series, vol. 2). Springer, Berlin Heidelberg New York, pp 381–488

  • Raschke F (1981) Die Kopplung zwischen Herzschlag und Atmung beim Menschen. Dissertation, Marburg University

  • Richter DW (1986) Zur Frage der Rhythmogenese der Atmung. Physiologie aktuell vol. 2. Gustav Fischer, Stuttgart, pp 201–218

  • Rittweger J, Pöpel A (1998) Respiratory-like periodicities in slow eye movements during sleep onset. Clin Physiol 18:471–478

    Article  CAS  PubMed  Google Scholar 

  • Rittweger J, Lambertz M, Langhorst P (1996) Electrodermal activity reveals respiratory and slower rhythms of the autonomic nervous system. Clin Physiol 16:323–326

    CAS  PubMed  Google Scholar 

  • Rittweger J, Lambertz M, Langhorst P (1997a) Influences of mandatory breathing on rhythmical components of electrodermal activity. Clin Physiol 609–618

  • Rittweger J, Pöpel A, Lambertz M, Behrens F, Langhorst P (1997b) Slow eye movements during sleep onset are temporally co-ordinated with the respiratory rhythm. In: Witte H, Zwiener U, Schack B, Doering A (eds) Quantitative and topological EEG and MEG analysis. Mayer, Jena, pp 193–195

  • Salerud EG, Tenland T, Nilsson GE, Öberg PA (1983) Rhythmical variations in human skin blood flow. Int J Microcirc Clin Exp 2:91–102

    CAS  PubMed  Google Scholar 

  • Scheibel AB (1984) The brain stem reticular core and sensory function. In: Darian-Smith I (ed) Sensory processes, Part 1 (Handbook of physiology series; The nervous system, vol. 3). Oxford University Press, New York, pp 213–256

  • Schiepek G, Weihrauch S, Honermann H, Jagdfeld F, Ludwig-Becker F, Petzold ER, Kröger F (2001) Macht die Natur Sprünge? Diskontinuität und kritische Fluktuationen auf dem Weg zum therapeutischen Erfolg. Verhaltensther Verhaltensmed 22:7–25

    Google Scholar 

  • Schmid-Schönbein H, Ziege S, Scheffler A, Blazek V, Grebe R (1996) Attractors and quasi-attractors in the cutaneous perfusion in human subjects and patients: “chaotic” or adaptive behaviour? J Auton Nerv Syst 57:136–140

    Article  PubMed  Google Scholar 

  • Schmid-Schönbein H, Ziege S, Grebe R, Blazek V, Spielmann R, Linzenich F (1997) Synergetic interpretation of patterned vasomotor activity in microvascular perfusion: discrete effects of myogenic and neurogenic vasoconstriction as well as arterial and venous pressure fluctuations. Int J Microcirc 17:346–359

    Google Scholar 

  • Schultz JH (1973) Das Autogene Training. Thieme, Stuttgart

  • Schulz B, Lambertz M, Schulz G, Langhorst P (1983) Reticular formation of the lower brainstem. A common system for cardiorespiratory and somatomotor functions: discharge patterns of neighbouring neurons influenced by somatosensory afferents. J Auton Nerv Syst 9:433–449

    Article  CAS  PubMed  Google Scholar 

  • Schulz G, Lambertz M, Schulz B, Langhorst P, Krienke B (1985) Reticular formation of the lower brainstem. A common system for cardio-respiratory and somatomotor functions. Cross-correlation analysis of discharge patterns of neighbouring neurones. J Auton Nerv Syst 12:35–62

    Article  CAS  PubMed  Google Scholar 

  • Seller H, Langhorst P, Richter D, Koepchen HP (1968) Über die Abhängigkeit der pressorezeptorischen Hemmung des Sympathikus von der Atemphase und ihre Auswirkung in der Vasomotorik. Pflügers Arch 302:300–314

    CAS  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

  • Silverman DG, Stout RG (2002) Distinction between atropine-sensitive control of microvascular and cardiac oscillatory activity. Microvasc Res 63:196–208

    Article  PubMed  Google Scholar 

  • Silverman DG, Stout RG, Lee FA, Ferneini EM (2001) Detection and characterization of cholinergic oscillatory control in the forehead microvasculature in response to systemic alpha-agonist infusion in healthy volunteers. Microvasc Res 61:144–147

    Article  CAS  PubMed  Google Scholar 

  • Singer W (1998) Consciousness and the structure of neuronal representations. Phil Trans R Soc Lond B 353:1829–1840

    Article  CAS  Google Scholar 

  • Smits T, Aarnoudse J, Geerdink J, Zijlstra W (1987) Hyperventilation-induced changes in periodic oscillations in forehead skin blood flow measured by laser Doppler flowmetry. Int J Microcirc Clin Exp 6:149–159

    CAS  PubMed  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence (Lecture notes in mathematics series vol. 898). Springer, Berlin Heidelberg New York, pp 366–381

  • Tegtmeier H (1997) Verfahren zur Rauschunterdrückung und Transientendetektion bei physiologischen Zeitreihen basierend auf der Wavelet-Transformation und der nichtlinearen Dynamik. Thesis, Institut für Physiologie, Rheinisch-Westfälische Technische Hochschule, Aachen

  • Vandenhouten R (1998) Analyse instationärer Zeitreihen komplexer Systeme und Anwendungen in der Physiologie. Shaker, Aachen

  • Vandenhouten R, Lambertz M, Langhorst P, Grebe R (2000) Nonstationary time-series analysis applied to investigation of brainstem system dynamics. IEEE Trans Bio-Med Eng 47:729–737

    Google Scholar 

  • Ziege S (1992) Optoelektronische Analyse von aktiven und passiven Hautperfusionsrhythmen und deren Bedeutung hinsichtlich der zentralen vegetativen Regulation. Thesis, Rheinisch-Westfälische Technische Hochschule, Aachen

  • Ziege S, Schmid-Schönbein H, Grebe R, Martin E (1997) Long-term registration of cutaneous microcirculation during general anesthesia. Int J Microcirc 17:385–394

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Perlitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlitz, V., Lambertz, M., Cotuk, B. et al. Cardiovascular rhythms in the 0.15-Hz band: common origin of identical phenomena in man and dog in the reticular formation of the brain stem?. Pflugers Arch - Eur J Physiol 448, 579–591 (2004). https://doi.org/10.1007/s00424-004-1291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1291-4

Keywords

Navigation