Skip to main content

Advertisement

Log in

Cell signalling-mediating insulin increase of mRNA expression for cationic amino acid transporters-1 and -2 and membrane hyperpolarization in human umbilical vein endothelial cells

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Insulin induces vasodilatation in human subjects and increases l-arginine transport and NO synthesis in human umbilical vein endothelial cells (HUVEC). Cell signalling events associated with insulin effects on activity and mRNA expression of the human cationic amino acid transporters 1 (hCAT-1) and 2B (hCAT-2B) are unknown. l-Arginine transport and eNOS activity were determined in HUVEC exposed to insulin. mRNA levels for hCAT-1, hCAT-2B and eNOS were quantitated by real time RT-PCR and endothelial NO synthase (eNOS) protein was identified by Western blot analysis. Intracellular Ca2+, l-arginine and l-citrulline levels, l-[3H]citrulline formation from l-[3H]arginine, cGMP formation, nitrite level, ATP release and membrane potential were determined. Insulin increased l-arginine transport and the mRNA levels for hCAT-1 and hCAT-2B and eNOS expression and activity. Insulin also induced membrane hyperpolarization and increased intracellular Ca2+, l-[3H]citrulline, cGMP and nitrite formation. Insulin-mediated stimulation of the l-arginine/NO pathway is thus associated with increased hCAT-1 and hCAT-2B mRNA, and eNOS expression, via mechanisms involving membrane hyperpolarization, mitogen-activated protein kinases p42 and p44, phosphatidylinositol 3-kinase, NO and protein kinase C. We have characterized a cell signalling pathway by which hyperinsulinaemia could lead to vasodilatation in human subjects, and which could have implications in patients in whom plasma insulin levels are altered, such as in diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–D
Fig. 3A, B
Fig. 4A–C
Fig. 5A–C
Fig. 6A–C
Fig. 7

Similar content being viewed by others

References

  1. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  CAS  PubMed  Google Scholar 

  2. Arancibia-Garavilla Y, Toledo F, Casanello P, Sobrevia L (2003) Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Exp Physiol 88:699–710

    Article  CAS  PubMed  Google Scholar 

  3. Casanello P, Sobrevia L (2002) Intrauterine growth retardation is associated with reduced activity and expression of the cationic amino acid transport systems y+/hCAT-1 and y+/hCAT-2B and lower activity of nitric oxide synthase in human umbilical vein endothelial cells. Circ Res 91:127–134

    Article  CAS  PubMed  Google Scholar 

  4. Cleland SJ, Petrie JR, Ueda S, Elliot HL, Connell JM (1998) Insulin as a vascular hormone: implications for the pathophysiology of cardiovascular disease. Clin Exp Pharmacol Physiol 25:175–184

    CAS  PubMed  Google Scholar 

  5. Closs EI, Basha FZ, Habermeier A, Föstermann U (1997) Interference ofl-arginine analogues with l-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1:65–73

    CAS  PubMed  Google Scholar 

  6. Contreras R, Fuentes O, Mann GE, Sobrevia L (1997) Diabetes and insulin-induced stimulation ofl-arginine transport and nitric oxide synthesis in rabbit isolated gastric glands. J Physiol (Lond) 498:787–796

    Google Scholar 

  7. Devés R, Boyd CAR (1998) Transporters for cationic amino acids in animal cells: Discovery, structure and function. Physiol Rev 78:487–545

    PubMed  Google Scholar 

  8. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    CAS  PubMed  Google Scholar 

  9. Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signalling proteins in human coronary endothelial cells. Circulation 106:466–472

    Article  CAS  PubMed  Google Scholar 

  10. Flores C, Rojas S, Aguayo C, Parodi J, Mann G, Pearson JD, Casanello P, Sobrevia L (2003) Rapid stimulation ofl-arginine transport by D-glucose involves p42/44mapk and nitric oxide in human umbilical vein endothelium. Circ Res 92:64–72

    Article  CAS  PubMed  Google Scholar 

  11. Graf P, Forstermann U, Closs EI (2001) The transport activity of human cationic amino acid transporter hCAT-1 is downregulated by activation of protein kinase C. Br J Pharmacol 132:1193–1200

    PubMed  Google Scholar 

  12. Harper JF (1984) Peritz’ F test: BASIC program of a robust multiple comparison test for statistical analysis of all differences among group means. Comput Biol Med 14:437–445

    CAS  PubMed  Google Scholar 

  13. Hermann C, Assmus B, Urbich C, Zeiher AM, Dimmeler S (2000) Insulin-mediated stimulation of protein kinase Akt: a potent survival signalling cascade for endothelial cells. Arterioscler Thromb Vasc Biol 20:402–409

    CAS  PubMed  Google Scholar 

  14. Holzmann S, Kukovetz WR, Braida C, Poch G (1992) Pharmacological interaction experiments differentiate between glibenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil. Eur J Pharmacol 29:1–7

    Article  Google Scholar 

  15. Irie K, Tsukahara F, Fujii E, Uchida Y, Yoshioka T, He WR, Shitashige M, Murota S, Muraki T (1997) Cationic amino acid transporter-2 mRNA induction by tumor necrosis factor-alpha in vascular endothelial cells. Eur J Pharmacol 339:289–293

    Article  CAS  PubMed  Google Scholar 

  16. Isenovic E, Muniyappa R, Milivojevic N, Rao Y, Sowers JR (2001) Role of PI3-kinase in isoproterenol and IGF-1 induced ecNOS activity. Biochem Biophys Res Commun 285:954–958

    Article  CAS  PubMed  Google Scholar 

  17. Janigro D, West GA, Gordon EL, Winn HR (1993) ATP-sensitive K+ channels in rat aorta and brain microvascular endothelial cells. Am J Physiol 265:C812–C821

    CAS  PubMed  Google Scholar 

  18. Katnik C, Adams DJ (1997) Characterization of ATP-sensitive potassium channels in freshly dissociated rabbit aortic endothelial cells. Am J Physiol 272:H2507–H2511

    CAS  PubMed  Google Scholar 

  19. Kobayashi E, Ando K, Nakano H, Iida T, Ohno H, Morimoto M, Tamaoki T (1989) Calphostins (UCN-1028), novel and specific inhibitors of protein kinase C. I. Fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 42:1470–1474

    Google Scholar 

  20. Kolch W (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 351:289–305

    CAS  PubMed  Google Scholar 

  21. Krotova KY, Zharikov SI, Block ER (2003) Classical isoform of PKC as regulators of CAT-1 transporter activity in pulmonary artery endothelial cells. Am J Physiol 284:L1037–L1044

    CAS  Google Scholar 

  22. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, Feener EP, Herbert TP, Rhodes CJ, King GL (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681

    CAS  PubMed  Google Scholar 

  23. Kuo L, Chancellor JD (1995). Adenosine potentiates flow-induced dilatation of coronary arterioles by activating KATP channels in endothelium. Am J Physiol 269:H541–H549

    CAS  PubMed  Google Scholar 

  24. Lal BK, Varma S, Pappas PJ, Hobson RW 2nd, Duran WN (2001) VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc Res 62:252–262

    Article  CAS  PubMed  Google Scholar 

  25. Lind L, Fugmann A, Millgard J, Berne C, Lithell H (2002) Insulin-mediates vasodilatation, but not glucose uptake or endothelium-mediated vasodilatation, is enhanced in young females compared with males. Clin Sci 102:241–246

    Article  CAS  PubMed  Google Scholar 

  26. Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252

    Google Scholar 

  27. Montagnani M, Ravichandran LV, Chen H, Esposito DL, Quon MJ (2002) Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol Endocrinol 16:1931–1942

    Article  CAS  PubMed  Google Scholar 

  28. Montecinos VP, Aguayo C, Flores C, Wyatt AW, Pearson JD, Mann GE, Sobrevia L (2000) Regulation of adenosine transport by D-glucose in human foetal endothelial cells: involvement of nitric oxide, protein kinase C and mitogen-activated protein kinase. J Physiol (Lond) 529:777–790

    Google Scholar 

  29. Muñoz M, Sweiry JH, Mann GE (1995) Insulin stimulates cationic amino acid transport activity in the isolated perfused rat pancreas. Exp Physiol 80:745–753

    PubMed  Google Scholar 

  30. Ogonowski AA, Kaesemeyer WH, Jin L, Ganapathy V, Leibach FH, Caldwell RW (2000) Effects of NO donors and synthase agonists on endothelial cell uptake ofl-Arg and superoxide production. Am J Physiol 278:C136–C146

    CAS  Google Scholar 

  31. Okouchi M, Okayama N, Shimizu M, Omi H, Fukutomi T, Itoh M (2002) High insulin exacerbates neutrophil-endothelial cell adhesion through endothelial surface expression of intercellular adhesion molecule-1 via activation of protein kinase C and mitogen-activated protein kinase. Diabetologia 45:556–559

    Google Scholar 

  32. Olanrewaju HA, Gafurov BS, Lieberman EM (2002) Involvement of K+ channels in adenosine A2A and A2B receptor-mediated hyperpolarization of porcine coronary artery endothelial cells. J Cardiovasc Pharmacol 40:43–49

    Article  CAS  PubMed  Google Scholar 

  33. Pan M, Wasa M, Lind DS, Gertler J Abbott W, Souba WW (1995) TNF-stimulated arginine transport by human vascular endothelium requires activation of protein kinase C. Ann Surg 221:590–601

    CAS  PubMed  Google Scholar 

  34. Pan M, Meng QH, Wolfgang CL, Lin CM, Karinch AM, Vary TC, Souba WW (2002) Activation of intestinal arginine transport by protein kinase C is mediated by mitogen-activated protein kinases. J Gastrointest Surg 6:876–882

    Article  PubMed  Google Scholar 

  35. Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood JD, Granger HJ, Ledda F, Ziche M (1998) Nitric oxide is an upstream signal of vascular endothelial growth factor-induced extracellular signal-regulated kinase 1/2 activation in postcapillary endothelium. J Biol Chem 273:4220–4226

    CAS  Google Scholar 

  36. Parodi J, Flores C, Aguayo C, Rudolph MI, Casanello P, Sobrevia L (2002) Inhibition of nitrobenzylthioinosine-sensitive adenosine transport by elevatedd-glucose involves activation of P2Y2 purinoceptors in human umbilical vein endothelial cells. Circ Res 90:570–577

    Article  CAS  PubMed  Google Scholar 

  37. Rojas S, Rojas R, Lamperti L, Casanello P, Sobrevia L (2003) Hyperglycaemia inhibits thymidine incorporation and cell growth via protein kinase C, mitogen-activated protein kinases and nitric oxide in human umbilical vein endothelium. Exp Physiol 88:209–219

    Article  CAS  PubMed  Google Scholar 

  38. Sala R, Rotoli BM, Colla E, Visigalli R, Parolari A, Bussolati O, Gazzola GC, Dall’Asta V (2002) Two-way arginine transport in human endothelial cells: TNF-alpha stimulation is restricted to system y+. Am J Physiol 282:C134–C143

    CAS  Google Scholar 

  39. Salt IP, Morrow VA, Brandie FM, Connel JMC, Petrie JR (2003) High glucose inhibits insulin-stimulated nitric oxide production without reducing endothelial nitric-oxide synthase Ser1177 phosphorylation in human aortic endothelial cells. J Biol Chem 278:18791–18797

    Article  CAS  PubMed  Google Scholar 

  40. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P (1994) Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 94:2511–2515

    CAS  PubMed  Google Scholar 

  41. Shaul PW (2002) Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol 64:749–774

    Google Scholar 

  42. Signorello MG, Pascale R, Leoncini G (2003) Transport ofl-arginine and nitric oxide formation in human platelets. Eur J Biochem 270:2005–2012

    CAS  PubMed  Google Scholar 

  43. Simmons WW, Closs EI, Cunningham JM, Smith TW, Kelly RA (1996) Cytokines and insulin induces cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation ofl-arginine transport and NO production by CAT-1, CAT-2A, and CAT-2B. J Biol Chem 271:11694–11702

    Article  CAS  PubMed  Google Scholar 

  44. Sobey CG (2001) Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21:28–38

    CAS  PubMed  Google Scholar 

  45. Sobrevia L, Nadal A, Yudilevich DL, Mann GE (1996) Activation ofl-arginine transport (system y+) and nitric oxide synthase by elevated glucose and insulin in human endothelial cells. J Physiol (Lond) 490:775–781

    Google Scholar 

  46. Steinberg HO, Baron AD (2002) Vascular function, insulin resistance and fatty acids. Diabetologia 45:623–634

    CAS  PubMed  Google Scholar 

  47. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD (1994) Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 94:1172–1179

    CAS  PubMed  Google Scholar 

  48. Taha C, Klip A (1999) The insulin signalling pathway. J Membr Biol 169:1–12

    CAS  PubMed  Google Scholar 

  49. Wu JY, Robinson D, Kung HJ, Hatzoglou M (1994) Hormonal regulation of the gene for the type C ecotropic retrovirus receptor in rat liver cells. J Virol 68:1615–1623

    CAS  PubMed  Google Scholar 

  50. Wyatt AW, Steinert JR, Wheeler-Jones CP, Morgan AJ, Sudgen D, Pearson JD, Sobrevia L, Mann GE (2002) Early activation of the p42/44MAPK pathway mediates adenosine-induced nitric oxide production in human endothelial cells: a novel calcium-insensitive mechanism. FASEB J 16:1584–1594

    Article  CAS  PubMed  Google Scholar 

  51. Zeng G, Quon MJ (1996) Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98:894–898

    CAS  Google Scholar 

  52. Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, Quon MJ (2000) Roles for insulin receptor, PI3-kinase, and Akt in insulin-signalling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 101:1539–1545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT 1030781, 1030607, 7030004, 7030109) and The Wellcome Trust (UK). C.F. holds CONICYT-PhD (Chile) fellowship. We thank Miss Alexandra Almeida for excellent secretarial assistance and the midwives of Hospital Clínico of the Pontificia Universidad Católica de Chile labour ward for supply of umbilical cords.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Sobrevia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, M., Flores, C., Pearson, J.D. et al. Cell signalling-mediating insulin increase of mRNA expression for cationic amino acid transporters-1 and -2 and membrane hyperpolarization in human umbilical vein endothelial cells. Pflugers Arch - Eur J Physiol 448, 383–394 (2004). https://doi.org/10.1007/s00424-004-1261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1261-x

Keywords

Navigation