Skip to main content

Advertisement

Log in

Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity

  • Skeletal Muscle
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The mitochondrial theory of ageing was tested. Isolated mitochondria from the quadriceps muscle from normal, healthy, young (age 20+ years, n=12) and elderly (70+ years, n=11) humans were studied in respiratory experiments and the data expressed as activities of the muscle. In each group, the subjects exhibited a variation of physical activity but, on average, the groups were representative for their age with maximum O2 consumption rate of 50±9 and 34±13 ml min−1 kg−1 (mean±SD), respectively. Thirteen different activities were assayed. α-Glycerophosphate oxidation was lower in the 70+ group (38%, P~0.001), as was the respiratory capacity for fatty acids (19%, P~0.03). The remaining eleven activities, including those of the central bioenergetic reactions, were not lower in the 70+ group. Pyruvate and α-ketoglutarate dehydrogenase activities (i.e. the tricarboxylic acid cycle turnover) and the respiratory chain activity could all account for ~14 mmol O2 min−1 kg−1 muscle (37 °C). The capacity for aerobic ATP synthesis was ~35 mmol ATP min−1 kg−1. The mitochondrial capacities were far in excess of whole-body performance. They were related to physical activity, but not to age. The mitochondrial theory of ageing, which attributes the age-related decline of muscle performance to decreased mitochondrial function, is incompatible with these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D.

Similar content being viewed by others

References

  1. Ames BN, Shigenaga MK, Hagen TM (1995) Mitochondrial decay in aging. Biochim Biophys Acta 1271:165–170

    Article  CAS  PubMed  Google Scholar 

  2. Atamna H, Walter PB, Ames BN (2002) The role of heme and iron-sulfur clusters in mitochondrial biogenesis, maintenance, and decay with age. Arch Biochem Biophys 397:345–353

    Article  CAS  PubMed  Google Scholar 

  3. Barrientos A, Casademont J, Rötig A, Miró Ò, Urbano-Márquez A, Rustin P, Cardellach F (1996) Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun 229:536–539

    Article  CAS  PubMed  Google Scholar 

  4. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  5. Blei ML, Conley KE, Kushmerick MJ (1993) Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol (Lond) 465:203–222

    Google Scholar 

  6. Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G, Papa S (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82

    Article  CAS  PubMed  Google Scholar 

  7. Boffoli D, Scacco SC, Vergari R, Persio MT, Solarino G, Laforgia R, Papa S (1996) Ageing associated in females with a decline in the content and activity of the b-c1 complex in skeletal muscle mitochondria. Biochim Biophys Acta 1315:66–72

    Article  CAS  PubMed  Google Scholar 

  8. Brierley EJ, Johnson MA, James OFW, Turnbull DM (1996) Effects of physical activity and age on mitochondrial function. Q J Med 89:251–258

    CAS  Google Scholar 

  9. Brierley EJ, Johnson MA, Bowman A, Ford GA, Subhan F, Reed JW, James OFW, Turnbull DM (1997) Mitochondrial function in muscle from elderly athletes. Ann Neurol 41:114–116

    CAS  PubMed  Google Scholar 

  10. Brierley EJ, Johnson MA, Lightowlers RN, James OFW, Turnbull DM (1998) Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 43:217–223

    CAS  PubMed  Google Scholar 

  11. Brooke MH, Kaiser KK (1970) Three myosine adenosine triphosphatase systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18:670–672

    CAS  PubMed  Google Scholar 

  12. Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging. Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    Article  CAS  PubMed  Google Scholar 

  13. Calabrese V, Scapagnini G, Giuffrida Stella AM, Bates TE, Clark JB (2001) Mitochondrial involvement in brain function and dysfunction: relevance to aging, neurodegerative disorders and longevity. Neurochem Res 26:739–764

    Article  CAS  PubMed  Google Scholar 

  14. Chretien D, Gallego J, Barrientos A, Casademont J, Cardellach F, Munnich A, Rötic A, Rustin P (1998) Biochemical parameters for the diagnosis of mitochondrial respiratory chain deficiency in humans, and their lack of age-related changes. Biochem J 329:249–254

    CAS  PubMed  Google Scholar 

  15. Coggan AR, Spina RJ, Rogers MA, King DS, Brown M, Nemeth PM, Holloszy JO (1990) Histochemical and enzymatic characteristics of skeletal muscle in master athletes. J Appl Physiol 68:1896–1901

    Article  CAS  PubMed  Google Scholar 

  16. Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Gerontol 47:B71–B76

    CAS  PubMed  Google Scholar 

  17. Coggan AR, Abduljalil AM, Swanson SC, Earle MS, Farris JW, Mendenhall LA, Robitaille P-M (1993) Muscle metabolism during exercise in young and older untrained and endurance-trained men J Appl Physiol 75:2125–2133

    CAS  Google Scholar 

  18. Cooper JM, Mann VM, Schapira AHV (1992) Analyses of respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci 113:91–98

    CAS  PubMed  Google Scholar 

  19. Durnin JVGA, Womersley J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32:77–97

    CAS  PubMed  Google Scholar 

  20. Hansford RG (1983) Bioenergetics in aging. Biochim Biophys Acta 726:41–80

    Article  CAS  PubMed  Google Scholar 

  21. Jackman MR, Willis WT (1996) Characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol 270:C673–C678

    CAS  PubMed  Google Scholar 

  22. Kent-Braun JA, NG AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078

    CAS  PubMed  Google Scholar 

  23. Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140:41–54

    CAS  PubMed  Google Scholar 

  24. Kovanen V, Suominen H, Risteli J, Risteli L (1988) Type IV collagen and laminin in slow and fast skeletal muscle in rats—effects of age and life-time endurance training. Coll Relat Res 8:145–153

    CAS  PubMed  Google Scholar 

  25. Kowald A (2001) The mitochondrial theory of aging. Biol Signals Recept 10:162–175

    Article  CAS  PubMed  Google Scholar 

  26. Larsson L, Grimby G, Karlsson J (1979) Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46:451–456

    CAS  PubMed  Google Scholar 

  27. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol 50:A11–A16

    Google Scholar 

  28. Lexell J, Taylor CC, Sjöström M (1988) What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci 84:275–294

    CAS  PubMed  Google Scholar 

  29. McCully KK, Fielding RA, Evans WJ, Leigh JS, Posner JD (1993) Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol 75:813–819

    CAS  PubMed  Google Scholar 

  30. Meredith CN, Frontera WR, Fisher EC, Hughes VA, Herland JC, Edwards J, Ewans WJ (1989) Peripheral effects of endurance training in young and old subjects. J Appl Physiol 66:2844–2849

    CAS  PubMed  Google Scholar 

  31. Miró Ò, Casademont J, Casals E, Perea M, Urbano-Márquez Á, Rustin P, Cardellach F (2000) Aging is associated with increased lipid peroxidation in human hearts, but not with mitochondrial respiratory chain defects. Cardiovasc Res 47:624–631

    Article  PubMed  Google Scholar 

  32. Örlander J, Aniansson A (1980) Effects of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75-year-old men. Acta Physiol Scand 109:149–154

    PubMed  Google Scholar 

  33. Ozawa T (1997) Genetic and functional changes in mitochondria associated with aging. Physiol Rev 77:425–464

    CAS  PubMed  Google Scholar 

  34. Papa S (1996) Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta 1276:87–105

    CAS  PubMed  Google Scholar 

  35. Pesce V, Cormio A, Fracasso F, Vecchiet J, Felzani G, Lezza AMS, Cantatore P, Gadaleta MN (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic Biol Med 30:1223–1233

    Article  CAS  PubMed  Google Scholar 

  36. Proctor DN, Joyner MJ (1997) Skeletal muscle mass and the reduction ofO2,max in trained older subjects. J Appl Physiol 82:1411–1415

    CAS  PubMed  Google Scholar 

  37. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PWR (1995) Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol 78:2033–2038

    CAS  PubMed  Google Scholar 

  38. Rasmussen HN, Rasmussen UF (1993) Respiration measurements in small scale. Anal Biochem 208:244–248

    Article  CAS  PubMed  Google Scholar 

  39. Rasmussen UF, Rasmussen HN (2000) Human quadriceps muscle mitochondria: a functional characterization. Mol Cell Biochem 208: 37–44

    Article  CAS  PubMed  Google Scholar 

  40. Rasmussen UF, Rasmussen HN (2000) Human skeletal muscle mitochondrial capacity. Acta Physiol Scand 168:473–480

    Article  CAS  PubMed  Google Scholar 

  41. Rasmussen HN, Andersen AJ, Rasmussen UF (1997) Optimization of preparation of mitochondria from 25–100 mg skeletal muscle. Anal Biochem 252:153–159

    Article  CAS  PubMed  Google Scholar 

  42. Rasmussen UF, Krustrup P, Bangsbo J, Rasmussen HN (2001) The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle. Pflugers Arch 443:180–187

    Article  CAS  PubMed  Google Scholar 

  43. Rasmussen UF, Rasmussen HN, Krustrup P, Quistorff B, Saltin B, Bangsbo J (2001) Aerobic metabolism of human quadriceps muscle: in vivo data parallel measurements on isolated mitochondria. Am J Physiol 280:E301–E307

    CAS  Google Scholar 

  44. Rifai Z, Welle S, Kamp C, Thornton CA (1995) Ragged red fibers in normal aging and inflammatory myopathy. Ann Neurol 37:24–29

    CAS  PubMed  Google Scholar 

  45. Shepherd D, Garland PG (1969) Citrate synthase from rat liver. Methods Enzymol 13:11–16

    CAS  Google Scholar 

  46. Sial S, Coggan AR, Carroll R, Goodwin J, Klein S (1996) Fat and carbohydrate metabolism during exercise in elderly and young subjects. Am J Physiol 271:E983–E989

    CAS  PubMed  Google Scholar 

  47. Taylor DJ, Crowe M, Bore PJ, Styles P, Arnold DL, Radda GK (1984) Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance. Gerontology 30:2–7

    CAS  PubMed  Google Scholar 

  48. Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 25:637–639

    Google Scholar 

  49. Van Remmen H, Richardson A (2001) Oxidative damage to mitochondria and aging. Exp Gerontol 36:957–968

    Article  PubMed  Google Scholar 

  50. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    CAS  PubMed  Google Scholar 

  51. Wei Y-H, Lu C-Y, Wei C-Y, Ma Y-S, Lee H-C (2001) Oxidative stress in human aging and mitochondrial disease—consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol 44:1–11

    CAS  PubMed  Google Scholar 

  52. Wilson PD, Franks LM (1975) The effect of age on mitochondrial ultrastructure and enzymes. Adv Exp Med Biol 53:171–183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to all of the enthusiastic volunteers, without whom this study would not have been possible. It was a most positive experience to collaborate with both the 20+ and 70+ age groups. The expert technical assistance of Ms. I-L. Føhns, H. Lauritzen, I. Kring and Mr. B. Larson is gratefully acknowledged. The study was supported by grant 504-14 from The Danish Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulla F. Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, U.F., Krustrup, P., Kjaer, M. et al. Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch - Eur J Physiol 446, 270–278 (2003). https://doi.org/10.1007/s00424-003-1022-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1022-2

Keywords

Navigation