Skip to main content

Advertisement

Log in

Could 18F-FDG-PET/CT avoid unnecessary thyroidectomies in patients with cytological diagnosis of follicular neoplasm?

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

Preoperative diagnosis of thyroid nodules with “follicular neoplasm” (FN) based on fine-needle aspiration cytology (FNAC) forces thyroidectomy to exclude malignancy. This study explores if 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) provides information enough to prevent unnecessary thyroidectomies in this clinical setting.

Methods

This is a prospective study involving 46 consecutive patients scheduled for thyroidectomy due to follicular neoplasm diagnosis in FNAC (36 follicular, 10 Hürthle cell neoplasms, Bethesda classification) since January 2009 until April 2012. All patients underwent preoperative 18F-FDG-PET/CT. Abnormal 18F-FDG thyroid uptake was assessed visually and by measuring the maximum standard uptake value (SUVmax). Results were compared with definitive pathology reports.

Results

Thirteen out of 46 patients (28.3 %) were finally diagnosed with thyroid cancer. Focal uptake correlated with a greater risk of malignancy (p = 0.009). 18F-FDG-PET/CT focal uptake showed sensitivity, specificity, positive and negative predictive values and overall accuracy of 92.3, 48.5, 41.4, 94.1 and 60.9 %, respectively. The optimal threshold SUVmax to discriminate malignancy was 4.2 with an area under receiver-operating characteristic curve of 0.76 (95 % confidence interval, 0.60–0.90). Use of 18F-FDG-PET/CT could reduce by 13–25 % the number of thyroidectomies performed for definitive benign nodules. However, it has demonstrated worse predictive ability in the subgroup of patients with diffuse uptake, oncocytic pattern in FNAC and lesions smaller than 2.

Conclusions

18F-FDG-PET/CT can play a role in the management of thyroid nodules larger than 2 cm cytologically reported as follicular neoplasm without oncocytic differentiation, allowing the avoidance of a significant number of thyroidectomies for definitive benign lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gharib H, Papini E (2007) Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin N Am 36:707–735

    Article  CAS  Google Scholar 

  2. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JWA, Wiersinga W, The European Thyroid Cancer Taskforce Consensus Statement (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154:787–803

    Article  PubMed  CAS  Google Scholar 

  3. Cooper DS, Doherty GM, Haugen BR et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. The American Thyroid Association (ATA) guidelines taskforce on thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

    Article  PubMed  Google Scholar 

  4. Cibas ES, Ali SZ (2009) The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol 132:658–665

    Article  PubMed  Google Scholar 

  5. Greaves TS, Olvera M, Florentine BD et al (2000) Follicular lesions of thyroid: a 5-year fine-needle aspiration experience. Cancer 90:335–341

    Article  PubMed  CAS  Google Scholar 

  6. Baloch ZW, LiVolsi VA, Asa SL et al (2008) Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid fine-needle aspiration state of the science conference. Diagn Cytopathol 36:425–443

    Article  PubMed  Google Scholar 

  7. British Thyroid Association, Royal College of Physicians (2007) Guidelines for the management of thyroid cancer. In: Perros P (ed) Report of the Thyroid Cancer Guidelines Update Group, 2nd edn. Royal College of Physicians, London

    Google Scholar 

  8. Layfield LJ, Abrams J, Cochand-Priollet B et al (2008) Post-thyroid FNA testing and treatment options: a synopsis of the National Cancer Institute Thyroid fine needle aspiration state of the science conference. Diagn Cytopathol 36:442–448

    Article  PubMed  Google Scholar 

  9. Musholt TJ, Clerici T, Dralle H, Frilling A, Goretzki PE et al (2011) German Association of Endocrine Surgeons practice guidelines for the surgical treatment of benign thyroid disease. Langenbecks Arch Surg 396:639–649. doi:10.1007/s00423-011-0774-y

    Article  PubMed  Google Scholar 

  10. Pacini F, Burroni L, Ciuoli C, Di Cairano G, Guarino E (2004) Management of thyroid nodules: a clinicopathological, evidence-based approach. Eur J Nucl Med Mol Imaging 31:1443–1449. doi:10.1007/s00259-004-1680-0

    Article  PubMed  Google Scholar 

  11. Rohren EM, Turkington TG, Coleman E (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  PubMed  Google Scholar 

  12. Wang W, Steven ML, Fazzari M et al (2000) Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 85:1107–1113

    Article  PubMed  CAS  Google Scholar 

  13. Esteva D, Muros MA, Llamas-Elvira JM et al (2009) Clinical and pathological factors related to 18F-FDG-PET positivity in the diagnosis of recurrence and/or metastasis in patients with differentiated thyroid cancer. Ann Surg Oncol 16:2006–2013

    Article  PubMed  CAS  Google Scholar 

  14. Kang KW, Kim SK, Kang HS et al (2003) Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab 88:4100–4104

    Article  PubMed  CAS  Google Scholar 

  15. Cohen MS, Arslan N, Dehdashti F et al (2001) Risk of malignancy in thyroid incidentalomas identified by fluorodeoxyglucose-positron emission tomography. Surgery 130:941–946

    Article  PubMed  CAS  Google Scholar 

  16. Kim TY, Kim WB, Ryu JS, Gong G, Hong SJ, Shong YK (2005) 18F-Fluorodeoxyglucose uptake in thyroid from positron emission tomogram (PET) for evaluation in cancer patients: high prevalence of malignancy in thyroid PET incidentaloma. Laryngoscope 115:1074–1078

    Article  PubMed  Google Scholar 

  17. Chen YK, Ding HJ, Chen KT et al (2005) Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for cancer screening in healthy Subjects. Anticancer Res 25:1421–1426

    PubMed  Google Scholar 

  18. Bogsrud TV, Karantanis D, Nathan MA et al (2007) The value of quantifying 18F-FDG uptake in thyroid nodules found incidentally on whole-body PET-CT. Nucl Med Commun 28:373–381

    Article  PubMed  Google Scholar 

  19. Are C, Hsu JF, Ghossein RA et al (2007) Histological aggressiveness of fluorodeoxyglucose positron-emission tomogram (FDG-PET)-detected incidental thyroid carcinomas. Ann Surg Oncol 14:3210–3215

    Article  PubMed  Google Scholar 

  20. Choi JW, Yoon YH, Kim SM, Koo BS (2011) Characteristics of primary papillary thyroid carcinoma with false-negative findings on initial (18)F-FDG PET/CT. Ann Surg Oncol 18:1306–1311

    Article  PubMed  Google Scholar 

  21. Heston TF, Wahl RL (2010) Molecular imaging in thyroid cancer. Cancer imaging 20:1–7

    Google Scholar 

  22. Kresnik E, Gallowitsch HJ, Mikosch P et al (2003) Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goitre area. Surgery 133:294–299

    Article  PubMed  Google Scholar 

  23. Kim JM, Riu JS, Kim TK et al (2007) 18F-Fluorodeoxyglucose positron emission tomography does not predict malignancy in thyroid nodules cytologically diagnosed as follicular neoplasm. J Clin Endocrinol Metab 92:1630–1634

    Article  PubMed  CAS  Google Scholar 

  24. Traugott AL, Dehdashti F, Trinkaus K et al (2010) Moley exclusion of malignancy in thyroid nodules with indeterminate fine-needle aspiration cytology after negative 18F-fluorodeoxyglucose positron emission tomography: interim analysis. World J Surg 34:1247–1253. doi:10.1007/s00268-010-0398-3

    Article  PubMed  Google Scholar 

  25. De Lellis RA, Lloyd RV, Heitz PU, Eng C (2004) World health classification of tumours. Pathology and genetics of tumours of endocrine organs. IARC, Lyon

    Google Scholar 

  26. Giammarile F, Hafdi Z, Bournaud C et al (2003) Is (18F)-2-fluoro-2-deoxy-d-glucose (FDG) scintigraphy with non-dedicated positron emission tomography useful in the diagnostic management of suspected metastatic thyroid carcinoma in patients with no detectable radioiodine uptake? Eur J Endocrinol 149:293–300

    Article  PubMed  CAS  Google Scholar 

  27. Freudenberg LS, Antoch G, Frilling A et al (2008) Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging 35:950–957

    Article  PubMed  CAS  Google Scholar 

  28. Dong MJ, Liu ZF, Zhao K et al (2009) Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun 30:639–650

    Article  PubMed  Google Scholar 

  29. Mitchell JC, Grant F, Evenson AR et al (2005) Preoperative evaluation of thyroid nodules with 18F-FDG-PET/CT. Surgery 138:1166–1175

    Article  PubMed  Google Scholar 

  30. Pagano L, Samá MT, Moriani F et al (2011) Thyroid incidentaloma identified by 18F-fluorodeoxiyglucose positron emission tomography with CT (FDG-PET/PET-CT): clinical and pathological relevance. Clin Endocrinol 75(4):528–534. doi:10.1111/j.1365-2265.2011.04107.x

    Article  CAS  Google Scholar 

  31. de Geus-Oei LF, Pieters GF, Bonenkamp JJ et al (2006) 18F-FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med 47:770–775

    PubMed  Google Scholar 

  32. Sebastianes FM, Cerci JJ, Zanoni PH et al (2007) Role of 18F-fluorodeoxyglucose positron emission tomography in preoperative assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab 92:4485–4488

    Article  PubMed  CAS  Google Scholar 

  33. Vriens D, de Wilt JHW, Van del Wilt GJ, Netea-Maier RT, Oyen WJG, de Geus-Oei LF (2011) The role of [18F]-2-fluoro-2-deoxy-d-glucose-positron emission tomography in thyroid nodules with indeterminate fine-needle aspiration biopsy. Systematic review and meta-analysis of the literature. Cancer 117:4582–4594

    Article  PubMed  Google Scholar 

  34. Hales NW, Krempl GA, Medina JE (2008) Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am J Otolaryngol 29:113–118

    Article  PubMed  Google Scholar 

  35. Smith RB, Robinson RA, Hoffman HT, Graham MM (2008) Preoperative FDG-PET imaging to assess the malignant potential of follicular neoplasms of the thyroid. Otolaryngol Head Neck Surg 138:101–106

    Article  PubMed  Google Scholar 

  36. Shie P, Cardarelli R, Sprawls K et al (2009) Systematic review: prevalence of malignant incidental thyroid nodules identified on flurine-18 fluorodeoxyglucose positron emission tomography. Nucl Med Commun 30:742–748

    Article  PubMed  Google Scholar 

  37. Yasuda S, Shohtsu A, Ide M et al (1998) Chronic thyroiditis: diffuse uptake of FDG at PET. Radiology 207:775–778

    PubMed  CAS  Google Scholar 

  38. Uematsu H, Sadato N, Ohtsubo T et al (1998) Fluorine-18-fluorodeoxyglucose PET versus thallium-201 scintigraphy evaluation of thyroid tumors. J Nuc Med 39:453–459

    CAS  Google Scholar 

  39. Karantanis D, Bogsrud TV, Wiseman GA et al (2007) Clinical significance of diffusely increased 18F-FDG uptake in the thyroid gland. J Nucl Med 48:896–901

    Article  PubMed  CAS  Google Scholar 

  40. Rosen J, He M, Umbricht C et al (2005) A six-gene model for differentiating benign from malignant thyroid tumors on the basis of gene expression. Surgery 138:1050–1057

    Article  PubMed  Google Scholar 

  41. Haber RS, Weiser KR, Pritsker A et al (1997) GLUT1 glucose transporter expression in benign and malignant thyroid nodules. Thyroid 7:363–367

    Article  PubMed  CAS  Google Scholar 

  42. Schonberger J, Ruschoff J, Grimm D et al (2002) Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavourable prognosis: an immunohistochemical study. Thyroid 12:747–754

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study received financial support from the Secretariat General on Quality and Modernization (Counselling of Health) of the Andalusian Regional Government through the Research Project 0057/2007 “Study of gene expression profile for the diagnostic and prognostic evaluation of patients with thyroid nodular lesions”.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Muñoz Pérez.

Additional information

This study was presented at the ESES Congress, Gothenburg, on May 25–26, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz Pérez, N., Villar del Moral, J.M., Muros Fuentes, M.A. et al. Could 18F-FDG-PET/CT avoid unnecessary thyroidectomies in patients with cytological diagnosis of follicular neoplasm?. Langenbecks Arch Surg 398, 709–716 (2013). https://doi.org/10.1007/s00423-013-1070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-013-1070-9

Keywords

Navigation