Skip to main content

Advertisement

Log in

Deregulation of HIF1-alpha and hypoxia-regulated pathways in hepatocellular carcinoma and corresponding non-malignant liver tissue—influence of a modulated host stroma on the prognosis of HCC

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to elucidate the role of HIF1A expression in hepatocellular carcinoma (HCC) and the corresponding non-malignant liver tissue and to correlate it with the clinical outcome of HCC patients after curative liver resection.

Methods

HIF1A expression was determined by quantitative RT-PCR in HCC and corresponding non-malignant liver tissue of 53 patients surgically treated for HCC. High-density gene expression analysis and pathway analysis was performed on a selected subset of patients with high and low HIF1A expression in the non-malignant liver tissue.

Results

HIF1A over-expression in the apparently non-malignant liver tissue was a predictor of tumor recurrence and survival. The estimated 1-year and 5-year disease-free survival was significantly better in patients with low HIF1A expression in the non-malignant liver tissue when compared to those patients with high HIF1 expression (88.9% vs. 67.9% and 61.0% vs. 22.6%, respectively, p = 0.008). Based on molecular pathway analysis utilizing high-density gene-expression profiling, HIF1A related molecular networks were identified that contained genes involved in cell migration, cell homing, and cell–cell interaction.

Conclusion

Our study identified a potential novel mechanism contributing to prognosis of HCC. The deregulation of HIF1A and its related pathways in the apparently non-malignant liver tissue provides for a modulated environment that potentially enhances or allows for HCC recurrence after curative resection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mazzaferro V, Romito R, Schiavo M, Mariani L, Camerini T, Bhoori S, Capussotti L, Calise F, Pellicci R, Belli G, Tagger A, Colombo M, Bonino F, Majno P, Llovet JM (2006) Prevention of hepatocellular carcinoma recurrence with alpha-interferon after liver resection in HCV cirrhosis. Hepatology 44:1543–1554

    Article  CAS  PubMed  Google Scholar 

  2. Hussain K, El-Serag HB (2009) Epidemiology, screening, diagnosis and treatment of hepatocellular carcinoma. Minerva Gastroenterol Dietol 55:123–138

    CAS  PubMed  Google Scholar 

  3. Sotiropoulos GC, Bockhorn M, Sgourakis G, Brokalaki EI, Molmenti EP, Neuhauser M, Radtke A, Wohlschlaeger J, Baba HA, Broelsch CE, Lang H (2009) R0 liver resections for primary malignant liver tumors in the noncirrhotic liver: a diagnosis-related analysis. Dig Dis Sci 54:887–894

    Article  PubMed  Google Scholar 

  4. Nathan H, Schulick RD, Choti MA, Pawlik TM (2009) Predictors of survival after resection of early hepatocellular carcinoma. Ann Surg 249:799–805

    Article  PubMed  Google Scholar 

  5. Cucchetti A, Piscaglia F, Caturelli E, Benvegnu L, Vivarelli M, Ercolani G, Cescon M, Ravaioli M, Grazi GL, Bolondi L, Pinna AD (2009) Comparison of recurrence of hepatocellular carcinoma after resection in patients with cirrhosis to its occurrence in a surveilled cirrhotic population. Ann Surg Oncol 16:413–422

    Article  PubMed  Google Scholar 

  6. Kawano Y, Sasaki A, Kai S, Endo Y, Iwaki K, Uchida H, Shibata K, Ohta M, Kitano S (2009) Prognosis of patients with intrahepatic recurrence after hepatic resection for hepatocellular carcinoma: a retrospective study. Eur J Surg Oncol 35:174–179

    CAS  PubMed  Google Scholar 

  7. Schmitz KJ, Wohlschlaeger J, Lang H, Sotiropoulos GC, Malago M, Steveling K, Reis H, Cicinnati VR, Schmid KW, Baba HA (2008) Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol 48:83–90

    Article  CAS  PubMed  Google Scholar 

  8. Baba HA, Wohlschlaeger J, Cicinnati VR, Hilgard P, Lang H, Sotiropoulos GC, Takeda A, Beckebaum S, Schmitz KJ (2009) Phosphorylation of p70S6 kinase predicts overall survival in patients with clear margin-resected hepatocellular carcinoma. Liver Int 29:399–405

    Article  CAS  PubMed  Google Scholar 

  9. Fillies T, Werkmeister R, van Diest PJ, Brandt B, Joos U, Buerger H (2005) HIF1-alpha overexpression indicates a good prognosis in early stage squamous cell carcinomas of the oral floor. BMC Cancer 5:84

    Article  PubMed  Google Scholar 

  10. Gruber M, Simon MC (2006) Hypoxia-inducible factors, hypoxia, and tumor angiogenesis. Curr Opin Hematol 13:169–174

    Article  CAS  PubMed  Google Scholar 

  11. Tanaka H, Yamamoto M, Hashimoto N, Miyakoshi M, Tamakawa S, Yoshie M, Tokusashi Y, Yokoyama K, Yaginuma Y, Ogawa K (2006) Hypoxia-independent overexpression of hypoxia-inducible factor 1alpha as an early change in mouse hepatocarcinogenesis. Cancer Res 66:11263–11270

    Article  CAS  PubMed  Google Scholar 

  12. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Google Scholar 

  13. Rasheed S, Harris AL, Tekkis PP, Turley H, Silver A, McDonald PJ, Talbot IC, Glynne-Jones R, Northover JM, Guenther T (2009) Hypoxia-inducible factor-1alpha and -2alpha are expressed in most rectal cancers but only hypoxia-inducible factor-1alpha is associated with prognosis. Br J Cancer 100:1666–1673

    Article  CAS  PubMed  Google Scholar 

  14. Cleven AH, van Engeland M, Wouters BG, de Bruine AP (2007) Stromal expression of hypoxia regulated proteins is an adverse prognostic factor in colorectal carcinomas. Cell Oncol 29:229–240

    CAS  PubMed  Google Scholar 

  15. Huang GW, Yang LY, Lu WQ (2005) Expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor in hepatocellular carcinoma: impact on neovascularization and survival. World J Gastroenterol 11:1705–1708

    CAS  PubMed  Google Scholar 

  16. Weber F, Shen L, Fukino K, Patocs A, Mutter GL, Caldes T, Eng C (2006) Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet 78:961–972

    Article  CAS  PubMed  Google Scholar 

  17. Weber F, Xu Y, Zhang L, Patocs A, Shen L, Platzer P, Eng C (2007) Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA 297:187–195

    Article  CAS  PubMed  Google Scholar 

  18. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, Reich M, Chan JA, Glickman JN, Ikeda K, Hashimoto M, Watanabe G, Daidone MG, Roayaie S, Schwartz M, Thung S, Salvesen HB, Gabriel S, Mazzaferro V, Bruix J, Friedman SL, Kumada H, Llovet JM, Golub TR (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359:1995–2004

    Article  CAS  PubMed  Google Scholar 

  19. Weber F, Shen L, Aldred MA, Morrison CD, Frilling A, Saji M, Schuppert F, Broelsch CE, Ringel MD, Eng C (2005) Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J Clin Endocrinol Metab 90:2512–2521

    Article  CAS  PubMed  Google Scholar 

  20. Kim S, Kim T (2003) Selection of optimal internal controls for gene expression profiling of liver disease. Biotechniques 35(456–458):460

    CAS  Google Scholar 

  21. Cicinnati VR, Shen Q, Sotiropoulos GC, Radtke A, Gerken G, Beckebaum S (2008) Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR. BMC Cancer 8:350

    Article  PubMed  Google Scholar 

  22. Stein T, Salomonis N, Nuyten DS, van de Vijver MJ, Gusterson BA (2009) A mouse mammary gland involution mRNA signature identifies biological pathways potentially associated with breast cancer metastasis. J Mammary Gland Biol Neoplasia 14:99–116

    Article  PubMed  Google Scholar 

  23. Llovet JM, Bruix J (2008) Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 48(Suppl 1):S20–S37

    Article  CAS  PubMed  Google Scholar 

  24. Selzner N, Selzner M, Odermatt B, Tian Y, Van Rooijen N, Clavien PA (2003) ICAM-1 triggers liver regeneration through leukocyte recruitment and Kupffer cell-dependent release of TNF-alpha/IL-6 in mice. Gastroenterology 124:692–700

    Article  CAS  PubMed  Google Scholar 

  25. Nakagawa H, Liyanarachchi S, Davuluri RV, Auer H, Martin EW Jr, de la Chapelle A, Frankel WL (2004) Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene 23:7366–7377

    Article  CAS  PubMed  Google Scholar 

  26. Gho YS, Kim PN, Li HC, Elkin M, Kleinman HK (2001) Stimulation of tumor growth by human soluble intercellular adhesion molecule-1. Cancer Res 61:4253–4257

    CAS  PubMed  Google Scholar 

  27. Roebuck KA (1999) Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review). Int J Mol Med 4:223–230

    CAS  PubMed  Google Scholar 

  28. Reiland J, Furcht LT, McCarthy JB (1999) CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. Prostate 41:78–88

    Article  CAS  PubMed  Google Scholar 

  29. Ghadjar P, Rubie C, Aebersold DM, Keilholz U (2009) The chemokine CCL20 and its receptor CCR6 in human malignancy with focus on colorectal cancer. Int J Cancer 125:741–745

    Article  CAS  PubMed  Google Scholar 

  30. Rubie C, Frick VO, Wagner M, Rau B, Weber C, Kruse B, Kempf K, Tilton B, Konig J, Schilling M (2006) Enhanced expression and clinical significance of CC-chemokine MIP-3 alpha in hepatocellular carcinoma. Scand J Immunol 63:468–477

    Article  CAS  PubMed  Google Scholar 

  31. Rubie C, Frick VO, Wagner M, Weber C, Kruse B, Kempf K, Konig J, Rau B, Schilling M (2006) Chemokine expression in hepatocellular carcinoma versus colorectal liver metastases. World J Gastroenterol 12:6627–6633

    CAS  PubMed  Google Scholar 

  32. Puhr M, Santer FR, Neuwirt H, Susani M, Nemeth JA, Hobisch A, Kenner L, Culig Z (2009) Down-regulation of suppressor of cytokine signaling-3 causes prostate cancer cell death through activation of the extrinsic and intrinsic apoptosis pathways. Cancer Res 69:7375–7384

    Article  CAS  PubMed  Google Scholar 

  33. Yang SF, Yeh YT, Wang SN, Hung SC, Chen WT, Huang CH, Chai CY (2008) SOCS-3 is associated with vascular invasion and overall survival in hepatocellular carcinoma. Pathology 40:558–563

    Article  CAS  PubMed  Google Scholar 

  34. Gazitt Y (2004) Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 18:1–10

    Article  CAS  PubMed  Google Scholar 

  35. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837

    CAS  PubMed  Google Scholar 

  36. Dai CX, Gao Q, Qiu SJ, Ju MJ, Cai MY, Xu YF, Zhou J, Zhang BH, Fan J (2009) Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer 9:418

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is funded by the German Research Foundation (DFG) (WE 2729/4-1 to F.W. as part of the clinical research group, KFO117) and by the Dr. Deichmann Foundation (AF 1-HCC to A.F.). We thank Joachim Fandrey and Andreas Paul for their helpful discussions and support. Special thanks goes to Jutta Hunke, Alexander Rácz, and Daniel Burdziak for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Weber.

Additional information

Authors Contributions

Study concept and design: Frank Weber, Maximilian Bockhorn, Chritoph E. Broelsch, Andrea Frilling

Acquisition of data: Frank Simon, Maximilian Bockhorn, Frank Weber, Christian Praha, Hideo A. Baba, Christoph E. Broelsch, Andrea Frilling

Analysis and interpretation of data: Frank Weber, Frank Simon, Maximilian Bockhorn, Christian Praha

Drafting of manuscript: Frank Weber, Frank Simon, Maximilian Bockhorn

Critical revision of manuscript: Frank Weber, Frank Simon, Maximilian Bockhorn, Christian Praha, Hideo A. Baba, Christoph E. Broelsch, Andrea Frilling

Frank Simon and Maximilian Bockhorn contributed equally to this work.

“Best of Abstracts—Chirurgisches Forum 2010, Deutsche Gesellschaft für Chirurgie”

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplemental figure 1

Unsupervised cluster analysis. Based on the selection criteria (1) 40% of data show at least 1.5-fold change from the median gene expression value in either direction; (2) probe sets with over 50% missing data were excluded, 1,697 genes were identified and used for further analysis. For the cluster distance measure average linkage method and 1-minus the correlation coefficient was used. After clustering, samples were labeled according to its class (i.e., high and low HIF1A expression). (JPEG 61 kb)

High resolution image file (TIF 24 KB)

Supplemental figure 2

HCC HIF1A expression was normalized to commercially available normal liver tissue and not to the corresponding non-malignant liver tissue. Kaplan–Meier representation of the overall survival of the two cohorts of HCC patients with high (dotted line) or low (solid line) HIF1A expression. Estimated mean overall free survival 42 months vs. 64 months (p = 0.018). The 1-year and 5-year overall survival was estimated in high and low HIF1A expressing tumors to 76.2%, 88.2% and 33.2%, 60.2%, respectively. (JPEG 75 kb)

High resolution image file (TIF 54 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, F., Bockhorn, M., Praha, C. et al. Deregulation of HIF1-alpha and hypoxia-regulated pathways in hepatocellular carcinoma and corresponding non-malignant liver tissue—influence of a modulated host stroma on the prognosis of HCC. Langenbecks Arch Surg 395, 395–405 (2010). https://doi.org/10.1007/s00423-009-0590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-009-0590-9

Keywords

Navigation