Skip to main content
Log in

The coordination dynamics of mobile conjugate reinforcement

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

What we know about infant learning and memory is founded largely on systematic studies by the late Carolyn Rovee-Collier (1942–2014) and her associates of a phenomenon called mobile conjugate reinforcement. Experiments show that when a ribbon is attached from a 3-month-old infant’s foot to a mobile suspended overhead the baby quickly realizes it can make the mobile move. The mobile, which offers interesting sights and sounds, responds conjugately to the baby’s vigorous kicks which increase in rate by a factor of 3–4. In this paper, using the concepts, methods and tools of coordination dynamics, we present a theoretical model which reproduces the experimental observations of Rovee-Collier and others and predicts a number of additional features that can be experimentally tested. The model is a dynamical system consisting of three equations, one for the baby’s leg movements, one for the jiggling motion of the mobile and one for the functional coupling between the two. A key mechanism in the model is positive feedback which is shown to depend sensitively on bifurcation parameters related to the infant’s level of attention and inertial properties of the mobile. The implications of our model for the dynamical (and developmental) origins of agency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Various words are used to describe the baby’s leg movements, such as “foot thrusts,” “kicking” and so forth. In actual fact, the baby moves its legs (quasi-)rhythmically and the usual quantities of phase, amplitude and frequency are applicable.

  2. We are reminded of Newton’s words in a letter to Oldenburg in 1675: “self-motion,” Newton remarked, “is beyond our understanding” (cited in Gleick 2003, p. 105).

References

  • Ajallooeian M, van den Kieboom J, Mukovskiy A, Giese M, Ijspeert A (2013) A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Physica D 262:41–56

    Article  Google Scholar 

  • Alon U (2007) An introduction to systems biology: design principles of biological circuits. Chapmann & Hall/CRC, Boca Raton

    Google Scholar 

  • Angulo-Kinzler RM (2001) Exploration and selection of intralimb coordination patterns in 3-month-old infants. J Motor Behav 33:363–376

    Article  CAS  Google Scholar 

  • Angulo-Kinzler RM, Ulrich B, Thelen E (2002) Three-month-old infants can select specific leg motor situations. Motor Control 6:52–68

    PubMed  Google Scholar 

  • Assisi CG, Jirsa VK, Kelso JAS (2005) Dynamics of multifrequency coordination using parametric driving: theory and experiment. Biol Cybern 93:6–21

    Article  PubMed  Google Scholar 

  • Bardy BG, Marin L, Stoffregen TA, Bootsma RJ (1999) Postural coordination modes considered as emergent phenomena. J Exp Psychol Human 25:1284–1301

    Article  CAS  Google Scholar 

  • Beek PJ, Schmidt RC, Sim MY, Turvey MT (1995) Linear and nonlinear stiffness and friction in biological rhythmic movements. Biol Cybern 73:499–507

    Article  CAS  PubMed  Google Scholar 

  • Beek PJ, Rikkert WEI, van Wieringen PCV (1996) Limit cycle properties of rhythmic forearm movements. J Exp Psychol Human 22:1077–1093

    Article  Google Scholar 

  • Beek PJ, Peper L, Daffertshofer A (2002) Modeling rhythmic interlimb coordination: beyond the Haken-Kelso-Bunz model. Brain Cogn 48:149–165

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JJ, Kelso JAS, Fuchs A (1996) Coordination dynamics of trajectory formation. Biol Cybern 74:41–54

    Article  CAS  PubMed  Google Scholar 

  • Chemero A (2011) Radical Embodied cognitive science. MIT Press, Cambridge

    Google Scholar 

  • Chen Y, Ding M, Kelso JAS (1997) Long term memory processes (\(1/f^{\alpha }\)) in human coordination. Phys Rev Let 79:4501–4504

    Article  CAS  Google Scholar 

  • Chen YP, Fetters L, Holt KG, Saltzman E (2002) Making the mobile move: constraining task and environment. Infant Behav Dev 25:195–220

    Article  Google Scholar 

  • DeGuzman GC, Kelso JAS (1991) Multifrequency behavioral patterns and the phase attractive circle map. Biol Cybern 64:485–495

    Article  CAS  PubMed  Google Scholar 

  • DeLuca C, Jantzen KJ, Comani S, Bertollo M, Kelso JAS (2010) Striatal activity during intentional switching depends on pattern stability. J Neurosci 30:3167–3174

    Article  CAS  Google Scholar 

  • Dumas G, DeGuzman GC, Tognoli E, Kelso JAS (2014) The human dynamic clamp as a paradigm for social interaction. Proc Natl Acad Sci 111:E3726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edelman GM (1987) Neural Darwinism: the theory of neural group selection. Basic Books, New York

    Google Scholar 

  • Eisenhammer T, Hübler A, Packard N, Kelso JAS (1991) Modeling experimental time series with ordinary differential equations. Biol Cybern 65:107–112

    Article  CAS  PubMed  Google Scholar 

  • Fink PW, Kelso JAS, DeGuzman GC (2000) Recruitment of degrees of freedom stabilizes coordination. J Exp Psychol Human 26:671–692

    Article  CAS  Google Scholar 

  • Fink PW, Kelso JAS, Jirsa VK (2009) Perturbation-induced false starts as a test of the Jirsa-Kelso excitator model. J Mot Behav 41:147–157

  • Fuchs A (2013) Nonlinear dynamics in complex systems. Springer, Berlin

    Book  Google Scholar 

  • Fuchs A, Jirsa VK (eds) (2008) Coordination: neural behavioral and social dynamics. Springer, Berlin

  • Fuchs A, Jirsa VK, Kelso JAS (2000) Theory of the relation between human brain activity (MEG) and hand movements. Neuroimage 11:359–369

    Article  CAS  PubMed  Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gleick J (2003) Isaac Newton. Pantheon Books, New York

    Google Scholar 

  • Haken H (1978) Synergetics. An introduction. Springer, Berlin

    Book  Google Scholar 

  • Haken H (1983) Advanced synergetics. Springer, Berlin

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356

    Article  CAS  PubMed  Google Scholar 

  • Haken H, Kelso JAS, Fuchs A, Pandya A (1990) Dynamic pattern recognition of coordinated biological motion. Neural Netw 3:347–356

    Article  Google Scholar 

  • Howard IS, Ingram JN, Kording KP, Wolpert DM (2009) Statistics of natural movements are reflected in motor errors. J Neurophysiol 102:1902–1910

    Article  PubMed Central  PubMed  Google Scholar 

  • Huys R, Perdikis D, Jirsa VK (2014) Functional architectures and structured flows on manifolds: a dynamical framework for motor behavior. Psychol Rev 121:302–336

    Article  PubMed  Google Scholar 

  • Ijspeert A, Grillner S, Dario P (2013a) Foreword for the special issue on lamprey and salamander robots and the central nervous system. Biol Cybern 107(5):495–496

  • Ijspeert A, Nakanishi J, Hoffmann H, Pastor P, Schaal S (2013b) Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput 25:328–373

    Article  PubMed  Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JAS (2004) Brain networks underlying timing behavior are influenced by prior context. Proc Natl Acad Sci USA 101:6815–6820

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeka JJ, Kelso JAS, Kiemel T (1993) Pattern switching in human multilimb coordination dynamics. Bull Math Biol 55:829–845

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Thelen E, Ulrich BD (1989) Constraints on multijoint movements: from the spontaneity of infancy to the skill of adults. Hum Mov Sci 8:393–402

    Article  Google Scholar 

  • Jirsa VK, Kelso JAS (2005) The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movements. J Motor Behav 37:35–51

    Article  Google Scholar 

  • Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioral dynamics: bimanual coordination. Neural Comput 10:2019–2045

    Article  CAS  PubMed  Google Scholar 

  • Kay BA, Kelso JAS, Saltzman EL, Schöner G (1987) Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model. J Exp Psychol Human 13:178–192

    Article  CAS  Google Scholar 

  • Kay BA, Saltzman EL, Kelso JAS (1991) Steady-state and perturbed rhythmical movements: a dynamical analysis. J Exp Psychol Human 17:183–197

    Article  CAS  Google Scholar 

  • Kelso JAS (1981) On the oscillatory basis of movement. Bull Psychon Soc 18:63

    Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. Am J Physiol 246:R1000–R1004

    CAS  PubMed  Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: the self organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS (2002) The complementary nature of coordination dynamics: self-organization and the origins of agency. Nonlinear Phenom Compl Syst 5:364–371

    Google Scholar 

  • Kelso JAS (2009) Coordination dynamics. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp 1537–1564

    Chapter  Google Scholar 

  • Kelso JAS, Clark JE (eds) (1982) The development of human movement coordination and control. Wiley, New York

  • Kelso JAS, Haken H (1995) New laws to be expected in the organism: synergetics of brain and behavior. In: Murphy M, O’Neill L (eds) What is life? The next 50 years. Cambridge University Press, Cambridge

    Google Scholar 

  • Kelso JAS, Holt KG, Rubin P, Kugler PN (1981) Patterns of human interlimb coordination emerge from the properties of nonlinear oscillatory processes: Theory and data. J Motor Behav 13:226–261

    Article  CAS  Google Scholar 

  • Kelso JAS, DelColle J, Schöner G (1990) Action-perception as a pattern formation process. In: Jeannerod M (ed) Attention and performance XIII. Erlbaum, Hillsdale, pp 139–169

    Google Scholar 

  • Kelso JAS, Fuchs A, Holroyd T, Lancaster R, Cheyne D, Weinberg H (1998) Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392:814–818

    Article  CAS  PubMed  Google Scholar 

  • Kelso JAS, Dumas G, Tognoli E (2013) Outline of a general theory of behavior and brain coordination. Neural Netw 37:120–131

    Article  PubMed Central  PubMed  Google Scholar 

  • Kostrubiec V, Zanone PG, Fuchs A, Kelso JAS (2012) Beyond the blank slate: routes to learning new coordination patterns depend on the intrinsic dynamics of the learner - experimental evidence and theoretical model. Front Hum Neurosci 6:1–14

    Article  Google Scholar 

  • Laughlin RB, Pines D (2000) The theory of everything. Proc Natl Acad Sci 97:28–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lavelli M, Fogel A (2013) Interdyad differences in early mother-infant face-to-face communication: real-time dynamics and developmental pathways. Dev Psychol 49:2257–2271

    Article  PubMed  Google Scholar 

  • Lewis M (2000) The promise of dynamic systems approaches for an integrated account of human development. Child Dev 71:36–43

    Article  CAS  PubMed  Google Scholar 

  • Mayville JM, Jantzen KJ, Fuchs A, Steinberg F, Kelso JAS (2002) Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Hum Brain Mapp 17:214–219

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, New York

    Google Scholar 

  • Mullally S, Maguire E (2014) Learning to remember: the early ontogeny of episodic memory. Dev Cogn Neurosci 9:12–29

    Article  PubMed Central  PubMed  Google Scholar 

  • Perdikis D, Huys R, Jirsa VK (2011) Time scale hierarchies in the functional organization of complex behaviors. PLoS Comp Biol 7(e1002):198

    Google Scholar 

  • Plenz D, Niebur E (eds) (2014) Criticality in neural systems. Wiley, New York

  • Port R, van Gelder T (eds) (1995) Mind as motion: explorations in the dynamics of cognition. MIT Press, Cambridge

  • Rabinovich M, Friston K, Varona P (eds) (2012) Principles of brain dynamics. MIT Press, Cambridge

  • Raibert MH (1986) Legged robots that balance. Cambridge University Press, Cambridge

    Google Scholar 

  • Rovee CK, Rovee DT (1969) Conjugate reinforcement of infant exploratory behavior. J Exp Child Psychol 8:33–39

  • Rovee-Collier C, Gekoski MJ (1979) The economics of infancy: a review of conjugate reinforcement. In: Reese HW, Lipsitt LP (eds) Advances in child development and behavior. Academic, New York, pp 195–255

  • Rovee-Collier C, Morrongiello BA, Aron M, Kupersmidt J (1978) Topographical response differentiation in three-month-old infants. Infant Behav Dev 1:149–176

    Article  Google Scholar 

  • Rovee-Collier C, Sullivan MV, Enright M, Lucas D, Fagen JW (1980) Reactivation of infant memory. Science 208:1159–1161

    Article  CAS  PubMed  Google Scholar 

  • Sargent B, Schweighofer N, Kubo M, Fetters L (2014) Infant exploratory learning: influence on leg joint coordination. PLoS ONE 9(e91):500

    Google Scholar 

  • Schöner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239:1513–1520

    Article  PubMed  Google Scholar 

  • Schöner G, Haken H, Kelso JAS (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257

    Article  PubMed  Google Scholar 

  • Sheets-Johnstone M (2011) The primacy of movement. John Benjamins, Amsterdam

    Book  Google Scholar 

  • Thelen E (1994) Three-month old infants can learn task-specific patterns of interlimb coordination. Psychol Sci 5:280–285

    Article  Google Scholar 

  • Thelen E, Fisher DM (1983) From spontaneous to instrumental behavior: kinematic analysis of movement changes during very early learning. Child Dev 54:129–140

    Article  CAS  PubMed  Google Scholar 

  • Thelen E, Smith LB (1994) A dynamic systems approach to the development of cognition and action. MIT Press, Cambridge

    Google Scholar 

  • Thelen E, Bradshaw G, Ward JA (1981) Spontaneous kicking in month old infants: manifestations of a human central motor program. Behav Neural Biol 32:45–53

    Article  CAS  PubMed  Google Scholar 

  • Thelen E, Kelso JAS, Fogel A (1987a) Self organizing systems and infant motor development. Dev Rev 7:39–65

    Article  Google Scholar 

  • Thelen E, Skala KD, Kelso JAS (1987b) The dynamic nature of early coordination: evidence from bilateral leg movements in young infants. Dev Psychol 23:179–186

    Article  Google Scholar 

  • Turvey MT, Carello C (2012) On intelligence from first principles: guidelines for inquiry into the hypothesis of physical intelligence (PI). Ecol Psychol 24:3–32

    Article  Google Scholar 

  • Wenisch OG, Noll J, van Hemmen JL (2005) Spontaneously emerging direction selectivity maps in visual cortex through STDP. Biol Cybern 93:239–247

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to Maxine Sheets-Johnstone for her inspirational and insightful writings on animate movement and for her encouraging comments on this work. Thanks also to an anonymous reviewer and the Editor, Leo van Hemmen, for helpful comments that improved the MS. The research was supported by a grant from the US National Institute of Health (MH080838), the Chaire d’Excellence Pierre de Fermat and the FAU Foundation (Eminent Scholar in Science). Preliminary versions of the paper were presented by JASK at the 18th Herbstakademie on “The Circularity of Mind and Matter,” Heidelberg, Germany, March 26–27, 2015, and the 110th Meeting of The Society of Experimental Psychologists, Charlottesville, VA, April 17–18, 2015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. A. Scott Kelso or Armin Fuchs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelso, J.A.S., Fuchs, A. The coordination dynamics of mobile conjugate reinforcement. Biol Cybern 110, 41–53 (2016). https://doi.org/10.1007/s00422-015-0676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-015-0676-0

Keywords

Navigation