Skip to main content

Advertisement

Log in

Development of a control system for artificially rehabilitated limbs: a review

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akagi T, Dohta S, Kenmotsu Y, Zhao F, Yoneda M (2012) Development of smart inner diameter sensor for position control of Mckibben artificial muscle. Procedia Eng 41:105–112. doi:10.1016/j.proeng.2012.07.149

    Google Scholar 

  • Alaqtash M, Yu H, Brower R, Abdelgawad A, Sarkodie-Gyan T (2011) Application of wearable sensors for human gait analysis using fuzzy computational algorithm. Eng Appl Artif Intell 24(6):1018–1025. doi:10.1016/j.engappai.2011.04.010

    Google Scholar 

  • Albertini JN, Barral X, Branchereau A, Favre JP, Guidicelli H, Magne JL, Magnan PE (2000) Long-term results of arterial allograft below-knee bypass grafts for limb salvage: a retrospective multicenter study. J Vasc Surg 31(3):426–435. doi:10.1016/s0741-5214(00)90301-x

    CAS  PubMed  Google Scholar 

  • Aliff M, Dohta S, Akagi T, Li H (2012) Development of a simple-structured pneumatic robot arm and its control using low-cost embedded controller. Procedia Eng 41:134–142. doi:10.1016/j.proeng.2012.07.153

    Google Scholar 

  • Ameri A, Scheme EJ, Kamavuako EN, Englehart KB, Parker PA (2014) Real-time, simultaneous myoelectric control using force and position-based training paradigms. IEEE Trans Biomed Eng 61(2):279–287. doi:10.1109/tbme.2013.2281595

    PubMed  Google Scholar 

  • Anam K, Al-Jumaily AA (2012) Active exoskeleton control systems: state of the art. Procedia Eng 41:988–994. doi:10.1016/j.proeng.2012.07.273

    Google Scholar 

  • Arjunan SP, Kumar DK (2008) Fractal features based technique to identify subtle forearm movements and to measure alertness using physiological signals (sEMG, EEG). In: TENCON 2008–2008 IEEE Region 10 Conference, 19–21 Nov 2008. pp 1–4. doi:10.1109/TENCON.2008.4766797

  • Arjunan P, Kumar D (2010) Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J NeuroEng Rehabil 7(1):1–10. doi:10.1186/1743-0003-7-53

    Google Scholar 

  • Asghari Oskoei M, Hu H (2007) Myoelectric control systems—a survey. Biomed Signal Process Control 2(4):275–294. doi:10.1016/j.bspc.2007.07.009

    Google Scholar 

  • Biddiss E, Chau T (2008) Dielectric elastomers as actuators for upper limb prosthetics: challenges and opportunities. Med Eng Phys 30(4):403–418. doi:10.1016/j.medengphy.2007.05.01133

    PubMed  Google Scholar 

  • Bryant PR, Pandian G (2001) Acquired limb deficiencies. 1. Acquired Limb deficiencies in children and young adults. Arch Phys Med Rehabil 82(3, Supplement 1):S3–S8. doi:10.1016/s0003-9993(01)80030-7

    CAS  PubMed  Google Scholar 

  • Burger H, Marinček Č, Jaeger RJ (2004) Prosthetic device provision to landmine survivors in bosnia and herzegovina: outcomes in 3 ethnic groups. Arch Phys Med Rehabil 85(1):19–28. doi:10.1016/j.apmr.2003.07.010

    PubMed  Google Scholar 

  • Carignan C, Tang J, Roderick S (2009) Development of an exoskeleton haptic interface for virtual task training. Paper presented at the proceedings of the 2009 IEEE/RSJ Int Conf Intell Rob Syst. St. Louis, MO, USA

  • Catalan MO (2012) First mind-controlled, bone-mounted robotic arms to be implanted in 2013. http://www.wired.co.uk/news/archive/2012-11/28/robotic-arm-transplant-operation

  • Chang C-L, Jin Z, Chang H-C, Cheng AC (2009) From neuromuscular activation to end-point locomotion: an artificial neural network-based technique for neural prostheses. J Biomech 42(8):982–988. doi:10.1016/j.jbiomech.2009.03.030

    PubMed Central  PubMed  Google Scholar 

  • Chang M-K (2010) An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators. Control Eng Pract 18(1):13–22. doi:10.1016/j.conengprac.2009.08.005

    Google Scholar 

  • Chang M-K, Liou J-J, Chen M-L (2011) T–S fuzzy model-based tracking control of a one-dimensional manipulator actuated by pneumatic artificial muscles. Control Eng Pract 19(12):1442–1449. doi:10.1016/j.conengprac.2011.08.002

    Google Scholar 

  • Cipriani C, Segil JL, Birdwell JA, Weir RF (2014) Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles. IEEE Trans Neural Syst Rehabil Eng 99:1–1. doi:10.1109/TNSRE.2014.2301234

    Google Scholar 

  • Clancy EA, Morin EL, Merletti R (2002) Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J Electromyogr Kinesiol 12(1):1–16. doi:10.1016/S1050-6411(01)00033-5

    CAS  PubMed  Google Scholar 

  • Clement RGE, Bugler KE, Oliver CW (2011) Bionic prosthetic hands: a review of present technology and future aspirations. Surgeon 9(6):336–340. doi:10.1016/j.surge.2011.06.001

    CAS  PubMed  Google Scholar 

  • Couture M, Desrosiers J, Caron CD (2011) Cognitive appraisal and perceived benefits of dysvascular lower limb amputation: a longitudinal study. Arch Gerontol Geriatr 52(1):5–11. doi:10.1016/j.archger.2009.11.002

    PubMed  Google Scholar 

  • Crevecoeur F, Giard T, Thonnard JL, Lefevre P (2011) Adaptive control of grip force to compensate for static and dynamic torques during object manipulation. J Neurophysiol 106(6):2973–2981. doi:10.1152/jn.00367.2011

  • Cura VO, Cunha FL, Aguiar ML, Cliquet A Jr (2003) Study of the different types of actuators and mechanisms for upper limb prostheses. Artif Organs 27(6):507–516

    PubMed  Google Scholar 

  • Daley H, Englehart K, Hargrove L, Kuruganti U (2012) High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control. J Electromyogr Kinesiol 22(3):478–484. doi:10.1016/j.jelekin.2011.12.012

    PubMed  Google Scholar 

  • Dang KTQ, Le Minh H, Van Vo T (2012) Analyzing surface EMG signals to determine relationship between jaw imbalance and arm strength loss. BioMed Eng OnLine 11(1):1–14. doi:10.1186/1475-925X-11-55

    Google Scholar 

  • del-Ama AJ, Koutsou AD, Moreno JC, de-los-Reyes A, Gil-Agudo A, Pons JL (2012) Review of hybrid exoskeletons to restore gait following spinal cord injury. J Rehabil Res Dev 49(4):497–514

    PubMed  Google Scholar 

  • Doerschuk PC, Gustafon DE, Willsky AS (1983) Upper extremity limb function discrimination using EMG signal analysis. IEEE Trans BME Biomed Eng 30(1):18–29. doi:10.1109/TBME.1983.325162

    CAS  Google Scholar 

  • Dutta A, Kobetic R, Triolo RJ (2011) An objective method for selecting command sources for myoelectrically triggered lower-limb neuroprostheses. J Rehabil Res Dev 48(8):935–948

    PubMed  Google Scholar 

  • Engeberg ED (2013) A physiological basis for control of a prosthetic hand. Biomed Signal Process Control 8(1):6–15. doi:10.1016/j.bspc.2012.06.003

    Google Scholar 

  • Esposito IJ, Beard DJ, Dodd CAF, Shafighian B (1997) Rehabilitation following patellar tendon or ABC prosthetic ligament reconstruction for chronic anterior cruciate ligament deficient knees. Knee 4(2):81–86. doi:10.1016/s0968-0160(96)00242-6

    Google Scholar 

  • Esquenazi A, Meier Iii RH (1996) Rehabilitation in limb deficiency. 4. Limb amputation. Arch Phys Med Rehabil 77(3, Supplement):S18–S28. doi:10.1016/s0003-9993(96)90239-7

    CAS  PubMed  Google Scholar 

  • Fan L-L, Song Y-D (2011) Fault-tolerant control and disturbance attenuation of a class of nonlinear systems with actuator and component failures. Acta Autom Sin 37(5):623–628. doi:10.1016/S1874-1029(11)60206-1

    Google Scholar 

  • Farina D, Merletti R (2000) Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. J Electromyogr Kinesiol 10(5):337–349

    CAS  PubMed  Google Scholar 

  • Fasano A, Herzog J, Raethjen J, Rose FEM, Volkmann J, Falk D, Deuschl G (2012) Lower limb joints kinematics in essential tremor and the effect of thalamic stimulation. Gait Posture 36(2):187–193. doi:10.1016/j.gaitpost.2012.02.013

    PubMed  Google Scholar 

  • Fougner A, Scheme E, Chan AD, Englehart K, Stavdahl O (2011) Resolving the limb position effect in myoelectric pattern recognition. IEEE Trans Neural Syst Rehabil Eng 19(6):644–651. doi:10.1109/tnsre.2011.216352935

    PubMed  Google Scholar 

  • Fougner A, Stavdahl O, Kyberd P (2014) System training and assessment in simultaneous proportional myoelectric prosthesis control. J NeuroEng Rehabil 11(1):75

    PubMed Central  PubMed  Google Scholar 

  • Gagné M, Reilly KT, Hétu S, Mercier C (2009) Motor control over the phantom limb in above-elbow amputees and its relationship with phantom limb pain. Neuroscience 162(1):78–86. doi:10.1016/j.neuroscience.2009.04.061

    PubMed  Google Scholar 

  • Gailey R, Allen K, Castles J, Kucharik J, Roeder M (2008) Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 45(1):15–29

  • Gallagher P, MacLachlan M (2004) The Trinity amputation and prosthesis experience scales and quality of life in people with lower-limb amputation. Arch Phys Med Rehabil 85(5):730–736. doi:10.1016/j.apmr.2003.07.009

    PubMed  Google Scholar 

  • Gao K, Chen S, Wang L, Zhang W, Kang Y, Dong Q, Zhou H, Li L (2010) Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3- to 5-year follow-up. Arthrosc J Arthrosc Amp Relat Surg 26(4):515–523. doi:10.1016/j.arthro.2010.02.001

    Google Scholar 

  • Garcia E, Arevalo JC, Muñoz G, Gonzalez-de-Santos P (2011) Combining series elastic actuation and magneto-rheological damping for the control of agile locomotion. Rob Autom Syst 59(10):827–839. doi:10.1016/j.robot.2011.06.006

    Google Scholar 

  • Ghorbani R, Wu Q (2009) Adjustable stiffness artificial tendons: conceptual design and energetics study in bipedal walking robots. Mech Mach Theory 44(1):140–161. doi:10.1016/j.mechmachtheory.2008.02.009

    Google Scholar 

  • Graupe D, Cline WK (1975) Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes. IEEE Trans Syst Man Cybern 5(2):252–259. doi:10.1109/TSMC.1975.5408479

    Google Scholar 

  • Hargrove LJ, Englehart K, Hudgins B (2007) A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 54(5):847–853. doi:10.1109/TBME.2006.889192

  • Hemami H, Dariush B (2012) Central mechanisms for force and motion—towards computational synthesis of human movement. Neural Netw 36:167–178. doi:10.1016/j.neunet.2012.09.008

    PubMed  Google Scholar 

  • Hofstad CJ, Weerdesteyn V, van der Linde H, Nienhuis B, Geurts AC, Duysens J (2009) Evidence for bilaterally delayed and decreased obstacle avoidance responses while walking with a lower limb prosthesis. Clin Neurophysiol 120(5):1009–1015. doi:10.1016/j.clinph.2009.03.003

    PubMed  Google Scholar 

  • Hudgins B, Parker P, Scott RN (1993) A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40(1):82–94. doi:10.1109/10.20477436

    CAS  PubMed  Google Scholar 

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21(4):642–653. doi:10.1016/j.neunet.2008.03.014

    PubMed  Google Scholar 

  • Jae-Myung Y, Yong-Myung A (2006) A study on a sensing system for artificial arm’s control. In: International joint conference on SICE-ICASE, 2006. 18–21 Oct 2006. pp 3083–3088. doi:10.1109/sice.2006.314717

  • Jahanabadi H, Mailah M, Zain MZM, Hooi HM (2011) Active force with fuzzy logic control of a two-link arm driven by pneumatic artificial muscles. J Bionic Eng 8(4):474–484. doi:10.1016/S1672-6529(11)60053-X

    Google Scholar 

  • Jawhar I, Mohamed N, Agrawal DP (2011) Linear wireless sensor networks: classification and applications. J Netw Comput Appl 34(5):1671–1682. doi:10.1016/j.jnca.2011.05.006

    Google Scholar 

  • Jerbi K, Vidal JR, Mattout J, Maby E, Lecaignard F, Ossandon T, Hamamé CM, Dalal SS, Bouet R, Lachaux JP, Leahy RM, Baillet S, Garnero L, Delpuech C, Bertrand O (2011) Inferring hand movement kinematics from MEG, EEG and intracranial EEG: from brain-machine interfaces to motor rehabilitation. IRBM 32(1):8–18. doi:10.1016/j.irbm.2010.12.004

    Google Scholar 

  • Jiang N, Englehart KB, Parker PA (2009) Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. IEEE Trans Biomed Eng 56(4):1070–1080. doi:10.1109/tbme.2008.2007967

    PubMed  Google Scholar 

  • Jiang N, Muceli S, Graimann B, Farina D (2013) Effect of arm position on the prediction of kinematics from EMG in amputees. Med Biol Eng Comput 51(1–2):143–151. doi:10.1007/s11517-012-0979-4

    PubMed Central  PubMed  Google Scholar 

  • Jiang N, Rehbaum H, Vujaklija I, Graimann B, Farina D (2014) Intuitive, online, simultaneous, and proportional myoelectric control over two degrees-of-freedom in upper limb amputees. IEEE Trans Neural Syst Rehabil Eng 22(3):501–510. doi:10.1109/TNSRE.2013.2278411

    PubMed  Google Scholar 

  • Jiménez-Fabián R, Verlinden O (2012) Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med Eng Phys 34(4):397–408. doi:10.1016/j.medengphy.2011.11.018

    PubMed  Google Scholar 

  • Johnson BF, Singh S, Evans L, Drury R, Datta D, Beard JD (1997) A prospective study of the effect of limb-threatening ischaemia and its surgical treatment on the quality of life. EUR J Vasc Endovasc Surg 13(3):306–314. doi:10.1016/s1078-5884(97)80103-7

    CAS  PubMed  Google Scholar 

  • Joshi D, Mishra A, Anand S (2011) ANFIS based knee angle prediction: an approach to design speed adaptive contra lateral controlled AK prosthesis. Appl Soft Comput 11(8):4757–4765. doi:10.1016/j.asoc.2011.07.007

    Google Scholar 

  • Kaluza P, Cioacă T (2012) Phase oscillator neural network as artificial central pattern generator for robots. Neurocomput 97:115–124. doi:10.1016/j.neucom.2012.05.01937

    Google Scholar 

  • Kao P-C, Ferris DP (2009) Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait Posture 29(2):230–236. doi:10.1016/j.gaitpost.2008.08.014

    PubMed Central  PubMed  Google Scholar 

  • Karlik B, Tokhi MO, Alci M (2003) A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. IEEE Trans Biomed Eng 50(11):1255–1261. doi:10.1109/tbme.2003.818469

    PubMed  Google Scholar 

  • Karmarkar AM, Collins DM, Wichman T, Franklin A, Fitzgerald SG, Dicianno BE, Pasquina PF, Cooper RA (2009) Prosthesis and wheelchair use in veterans with lower-limb amputation. J Rehabil Res Dev 46(5):567–576

    PubMed  Google Scholar 

  • van Keeken HG, Vrieling AH, Hof AL, Postema K, Otten B (2012) Principles of obstacle avoidance with a transfemoral prosthetic limb. Med Eng Phys 34(8):1109–1116. doi:10.1016/j.medengphy.2011.11.017

    PubMed  Google Scholar 

  • Khan MJ, Afzal MR, Naseer N, Koreshi ZU (2012) Control system design for a prosthetic leg using series damping actuator. In: 2012 international conference on robotics and artificial intelligence (ICRAI), 22–23 Oct 2012. pp 1–6. doi:10.1109/ICRAI.2012.6413418

  • Khushaba RN, Kodagoda S, Takruri M, Dissanayake G (2012) Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst Appl 39(12):10731–10738. doi:10.1016/j.eswa.2012.02.192

    Google Scholar 

  • Klute GK, Kantor C, Darrouzet C, Wild H, Wilkinson S, Iveljic S, Creasey G (2009) Lower-limb amputee needs assessment using multistakeholder focus-group approach. J Rehabil Res Dev 46(3):293–304

    PubMed  Google Scholar 

  • Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, Marasco PD, Zhou P, Dumanian GA (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369(9559):371–380. doi:10.1016/S0140-6736(07)60193-7

  • Kukke SN, Triolo RJ (2004) The effects of trunk stimulation on bimanual seated workspace. IEEE Trans Neural Syst Rehabil Eng 12(2):177–185

    PubMed  Google Scholar 

  • Lamb PF, Bartlett RM, Robins A (2011) Artificial neural networks for analyzing inter-limb coordination: the golf chip shot. Hum Mov Sci 30(6):1129–1143. doi:10.1016/j.humov.2010.12.006

    PubMed  Google Scholar 

  • Le F, Markovsky I, Freeman CT, Rogers E (2010) Identification of electrically stimulated muscle models of stroke patients. Control Eng Pract 18(4):396–407. doi:10.1016/j.conengprac.2009.12.007

    Google Scholar 

  • Lee JB, James DA, Ohgi Y, Yamanaka S (2012) Monitoring sprinting gait temporal kinematics of an athlete aiming for the 2012 London Paralympics. Procedia Eng 34:778–783. doi:10.1016/j.proeng.2012.04.133

    Google Scholar 

  • Li G, Kuiken TA (2008) Modeling of prosthetic limb rotation control by sensing rotation of residual arm bone. IEEE Trans Biomed Eng 55(9):2134–2142

    PubMed Central  PubMed  Google Scholar 

  • Magdalena L (1997) A fuzzy logic controller with learning through the evolution of its knowledge base. Int J Approx Reason 16:335–358

    Google Scholar 

  • Maki BE, Sibley KM, Jaglal SB, Bayley M, Brooks D, Fernie GR, Flint AJ, Gage W, Liu BA, McIlroy WE, Mihailidis A, Perry SD, Popovic MR, Pratt J, Zettel JL (2011) Reducing fall risk by improving balance control: development, evaluation and knowledge-translation of new approaches. J Saf Res 42(6):473–485. doi:10.1016/j.jsr.2011.02.002

    Google Scholar 

  • Martins MM, Santos CP, Frizera-Neto A, Ceres R (2012) Assistive mobility devices focusing on smart walkers: classification and review. Rob Autom Syst 60(4):548–562. doi:10.1016/j.robot.2011.11.015

    Google Scholar 

  • Matjačić Z, Hunt K, Gollee H, Sinkjaer T (2003) Control of posture with FES systems. Med Eng Phys 25(1):51–62. doi:10.1016/S1350-4533(02)00115-7

    PubMed  Google Scholar 

  • Mergner T (2010) A neurological view on reactive human stance control. Annu Rev Control 34(2):177–198. doi:10.1016/j.arcontrol.2010.08.001

    Google Scholar 

  • Mohammed S, Poignet P, Fraisse P, Guiraud D (2012) Toward lower limbs movement restoration with input–output feedback linearization and model predictive control through functional electrical stimulation. Control Eng Pract 20(2):182–195. doi:10.1016/j.conengprac.2011.10.010

    Google Scholar 

  • Moreno-Valenzuela J, Salinas-Avila A (2011) Biomimetic control of mechanical systems equipped with musculotendon actuators. J Bionic Eng 8(1):56–68. doi:10.1016/S1672-6529(11)60011-5

    Google Scholar 

  • Muscillo R, Schmid M, Conforto S, D’Alessio T (2011) Early recognition of upper limb motor tasks through accelerometers: real-time implementation of a DTW-based algorithm. Comput Biol Med 41(3):164–172. doi:10.1016/j.compbiomed.2011.01.007

    PubMed  Google Scholar 

  • Nagano A, Komura T, Fukashiro S, Himeno R (2005) Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping. J Electromyogr Kines 15(4):367–376. doi:10.1016/j.jelekin.2004.12.006

    Google Scholar 

  • Naik GR, Kumar DK, Palaniswami M (2008) Surface EMG based hand gesture identification using semi blind ICA: validation of ICA matrix analysis. Electromyogr Clin Neurophys 48(3–4):169– 180

    CAS  Google Scholar 

  • Nederhand MJ, Van Asseldonk EHF, der Kooij Hv, Rietman HS (2012) Dynamic Balance Control (DBC) in lower leg amputee subjects; contribution of the regulatory activity of the prosthesis side. Clin Biomech 27(1):40–45. doi:10.1016/j.clinbiomech.2011.07.008

    Google Scholar 

  • Nef T, Guidali M, Riener R (2009) ARMin III—arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bionics Biomech 6(2):127–142. doi:10.1080/1176232090284017939

    Google Scholar 

  • Newham DJ, Donaldson N de N (2007) FES cycling. Acta Neurochir Suppl 97(Pt 1):395–402

    CAS  PubMed  Google Scholar 

  • Nguyen CH, Alici G, Wallace GG (2012) Modelling trilayer conjugated polymer actuators for their sensorless position control. Sens Actuators A Phys 185:82–91. doi:10.1016/j.sna.2012.07.018

    CAS  Google Scholar 

  • Oskoei MA, Hu H (2008) Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans Biomed Eng 55(8):1956–1965. doi:10.1109/tbme.2008.919734

    PubMed  Google Scholar 

  • Park SH, Lee SP (1998) EMG pattern recognition based on artificial intelligence techniques. IEEE Trans Rehabil Eng 6(4):400–405

    CAS  PubMed  Google Scholar 

  • Parker P, Englehart K, Hudgins B (2006) Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol 16(6):541–548. doi:10.1016/j.jelekin.2006.08.006

    CAS  PubMed  Google Scholar 

  • Pérez-Rodríguez R, Marcano-Cedeño A, Costa Ú, Solana J, Cáceres C, Opisso E, Tormos JM, Medina J, Gómez EJ (2012) Inverse kinematics of a 6 DoF human upper limb using ANFIS and ANN for anticipatory actuation in ADL-based physical Neurorehabilitation. Expert Syst Appl 39(10):9612–9622. doi:10.1016/j.eswa.2012.02.143

    Google Scholar 

  • Phinyomark A, Phukpattaranont P, Limsakul C (2012) Fractal analysis features for weak and single-channel upper-limb EMG signals. Expert Syst Appl 39(12):11156–11163. doi:10.1016/j.eswa.2012.03.039

    Google Scholar 

  • Di Pino G, Guglielmelli E, Rossini PM (2009) Neuroplasticity in amputees: main implications on bidirectional interfacing of cybernetic hand prostheses. Prog Neurobiol 88(2):114–126. doi:10.1016/j.pneurobio.2009.03.001

    PubMed  Google Scholar 

  • Pizzi R, Cino G, Gelain F, Rossetti D, Vescovi A (2007) Learning in human neural networks on microelectrode arrays. Biosystems 88(1–2):1–15. doi:10.1016/j.biosystems.2006.03.012

    CAS  PubMed  Google Scholar 

  • Ponmozhi J, Frias C, Marques T, Frazão O (2012) Smart sensors/actuators for biomedical applications: review. Measurement 45(7):1675–1688. doi:10.1016/j.measurement.2012.02.006

    Google Scholar 

  • Previdi F (2002) Identification of black-box nonlinear models for lower limb movement control using functional electrical stimulation. Control Eng Pract 10(1):91–99. doi:10.1016/S0967-0661(01)00128-9

    Google Scholar 

  • Previdi F, Schauer T, Savaresi SM, Hunt KJ (2004) Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach. IEEE Trans Control Syst Technol 12(1):176–182. doi:10.1109/tcst.2003.82196740

    Google Scholar 

  • Previdi F, Ferrarin M, Savaresi SM, Bittanti S (2005) Closed-loop control of FES supported standing up and sitting down using virtual reference feedback tuning. Control Eng Pract 13(9):1173–1182. doi:10.1016/j.conengprac.2004.10.007

    Google Scholar 

  • Pujana-Arrese A, Mendizabal A, Arenas J, Prestamero R, Landaluze J (2010) Modelling in Modelica and position control of a 1-DoF set-up powered by pneumatic muscles. Mechatronics 20(5):535–552. doi:10.1016/j.mechatronics.2010.05.002

    Google Scholar 

  • Resnik L, Meucci MR, Lieberman-Klinger S, Fantini C, Kelty DL, Disla R, Sasson N (2012) Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation. Arch Phys Med Rehabil 93(4):710–717. doi:10.1016/j.apmr.2011.11.010

  • Richardson R, Brown M, Bhakta B, Levesley M (2005) Impedance control for a pneumatic robot-based around pole-placement, joint space controllers. Control Eng Pract 13(3):291–303. doi:10.1016/j.conengprac.2004.03.011

    Google Scholar 

  • Rosenfeld A, Dvorachek M, Rotstein I (2000) Bronze single crown-like prosthetic restorations of teeth from the Late Roman period. J Archaeolog Sci 27(7):641–644. doi:10.1006/jasc.1999.0517

  • Rossini PM, Micera S, Benvenuto A, Carpaneto J, Cavallo G, Citi L, Cipriani C, Denaro L, Denaro V, Di Pino G, Ferreri F, Guglielmelli E, Hoffmann K-P, Raspopovic S, Rigosa J, Rossini L, Tombini M, Dario P (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121(5):777–783. doi:10.1016/j.clinph.2010.01.001

    PubMed  Google Scholar 

  • Rusaw D, Ramstrand N (2010) Sagittal plane position of the functional joint centre of prosthetic foot/ankle mechanisms. Clin Biomech 25(7):713–720. doi:10.1016/j.clinbiomech.2010.04.005

    Google Scholar 

  • Sagawa Y Jr, Turcot K, Armand S, Thevenon A, Vuillerme N, Watelain E (2011) Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture 33(4):511–526. doi:10.1016/j.gaitpost.2011.02.003

    PubMed  Google Scholar 

  • Santos CP, Matos V (2012) CPG modulation for navigation and omnidirectional quadruped locomotion. Rob Autom Syst 60(6):912–927. doi:10.1016/j.robot.2012.01.004

    Google Scholar 

  • Sawers A, Hahn ME (2011) Trajectory of the center of rotation in non-articulated energy storage and return prosthetic feet. J Biomech 44(9):1673–1677. doi:10.1016/j.jbiomech.2011.03.028

    PubMed  Google Scholar 

  • Schauer T, Hunt K (2000) Linear modelling and controller design for the single limb movement of paraplegics using FES. In: Carson E, Salzsieder E (eds) A proceedings volume from the 4th IFAC symposium on modell control in biomedical systems. Greifswald, Germany, March-April 2000. pp 7–12

  • Scheme E, Englehart K (2011) Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J Rehabil Res Dev 48(6):643–659

    PubMed  Google Scholar 

  • Scholz MS, Blanchfield JP, Bloom LD, Coburn BH, Elkington M, Fuller JD, Gilbert ME, Muflahi SA, Pernice MF, Rae SI, Trevarthen JA, White SC, Weaver PM, Bond IP (2011) The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Technol 71(16):1791–1803. doi:10.1016/j.compscitech.2011.08.017

    CAS  Google Scholar 

  • Schultz AE, Kuiken TA (2011) Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities. PM&R 3(1):55–67. doi:10.1016/j.pmrj.2010.06.016

    Google Scholar 

  • Schwartz AB, Cui XT, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–220. doi:10.1016/j.neuron.2006.09.019

    CAS  PubMed  Google Scholar 

  • Sinha N, Yeow JTW (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobiosci 4(2):180–195

    Google Scholar 

  • van der Smagt P (2000) Benchmarking cerebellar control. Rob Autom Syst 32(4):237–251. doi:10.1016/S0921-8890(00)00090-7

    Google Scholar 

  • Takeda H, Tsujiuchi N, Koizumi T, Kan H, Hirano M, Nakamura Y (2009) Development of prosthetic arm with pneumatic prosthetic hand and tendon-driven wrist. Conf Proc IEEE Eng Med Biol Soc 51(10):5333668

    Google Scholar 

  • Tan AH (2009) Direction-dependent systems—a survey. Automatica 45(12):2729–2743. doi:10.1016/j.automatica.2009.09.024

    Google Scholar 

  • Terasawa N, Takeuchi I (2013) Electrochemical and electromechanical properties of high-performance polymer actuators containing vapor grown carbon nanofiber and metal oxide. Sens Actuators B: Chem 176:1065–1073. doi:10.1016/j.snb.2012.10.043

    CAS  Google Scholar 

  • Thanh TUDC, Ahn KK (2006) Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics 16(9):577–587. doi:10.1016/j.mechatronics.2006.03.011

    Google Scholar 

  • Timmermans A, Seelen H, Willmann R, Kingma H (2009) Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J NeuroEng Rehabil 6(1):1

    PubMed Central  PubMed  Google Scholar 

  • Tiwana MI, Redmond SJ, Lovell NH (2012) A review of tactile sensing technologies with applications in biomedical engineering. Sens Actuators A 179:17–31. doi:10.1016/j.sna.2012.02.05142

    CAS  Google Scholar 

  • Tormene P, Giorgino T, Quaglini S, Stefanelli M (2009) Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif Intell Med 45(1):11–34. doi:10.1016/j.artmed.2008.11.007

  • Torop J, Sugino T, Asaka K, Jänes A, Lust E, Aabloo A (2012) Nanoporous carbide-derived carbon based actuators modified with gold foil: prospect for fast response and low voltage applications. Sens Actuators B Chem 161(1):629–634. doi:10.1016/j.snb.2011.10.079

    CAS  Google Scholar 

  • Vanoncini M, Holderbaum W, Andrews BJ (2012) Electrical Stimulation for trunk control in paraplegia: a feasibility study. Control Eng Pract 20(12):1247–1258. doi:10.1016/j.conengprac.2012.06.007

  • Varol HA, Sup F, Goldfarb M (2009) Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. IEEE Int Conf Rehabil Rob 5209582:645–651

  • Vaugoyeau M, Hakam H, Azulay J-P (2011) Proprioceptive impairment and postural orientation control in Parkinson’s disease. Hum Mov Sci 30(2):405–414. doi:10.1016/j.humov.2010.10.006

    PubMed  Google Scholar 

  • Wang J (2001) Glucose Biosensors: 40 years of advances and challenges. Electroanalysis 13(12):983–988. doi:10.1002/1521-4109(200108)13:12\(<\)983:aid-elan983\(>\)3.0.co;2-#

  • Watve S, Dodd G, MacDonald R, Stoppard ER (2011) Upper limb prosthetic rehabilitation. Orthopaed Trauma 25(2):135–142. doi:10.1016/j.mporth.2010.10.003

  • Weir RF (2008) Standard handbook of biomedical engineering and design. Amazon, United Nation, Chapter 32, 43

  • Wen-Wei Hsu R, Sim FH, Chao EYS (1999) Reoperation results after segmental prosthetic replacement of bone and joint for limb salvage. J Arthroplasty 14(5):519–526. doi:10.1016/s0883-5403(99)90071-2

    Google Scholar 

  • Whalen SA, Richards CD, Bahr DF, Richards RF (2007) Characterization and modeling of a microcapillary driven liquid-vapor phase-change membrane actuator. Sens Actuators A Phys 134(1):201–212. doi:10.1016/j.sna.2006.04.038

    CAS  Google Scholar 

  • Wise KD (2007) Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage. Sens Actuators A 136(1):39–50. doi:10.1016/j.sna.2007.02.013

    CAS  Google Scholar 

  • Wolf SI, Alimusaj M, Fradet L, Siegel J, Braatz F (2009) Pressure characteristics at the stump/socket interface in transtibial amputees using an adaptive prosthetic foot. Clin Biomech 24(10):860–865. doi:10.1016/j.clinbiomech.2009.08.007

    Google Scholar 

  • Wu S-K, Waycaster G, Shen X (2011) Electromyography-based control of active above-knee prostheses. Control Eng Pract 19(8):875–882. doi:10.1016/j.conengprac.2011.04.017

    Google Scholar 

  • Yap TTV, Ai Hui T, Foo MFL (2007) Modelling of direction-dependent systems using bilinear models. In: Conference Proceedings IEEE Instrum Measurement Technology 2007. IMTC 2007. 1–3 May 2007. pp 1–6. doi:10.1109/imtc.2007.379028

  • Yeh TJ, Wu M-J, Lu T-J, Wu F-K, Huang C-R (2010) Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics 20(6):686–697. doi:10.1016/j.mechatronics.2010.07.004

    Google Scholar 

  • Zardoshti-Kermani M, Wheeler BC, Badie K, Hashemi RM (1995) EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans Rehabil Eng 3(4):324–333. doi:10.1109/86.481972

    Google Scholar 

  • Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 30(4–6):459–485

    CAS  PubMed  Google Scholar 

  • Zhang D, Poignet P, Widjaja F (2011) Neural oscillator based control for pathological tremor suppression via functional electrical stimulation. Control Eng Pract 19(1):74–88. doi:10.1016/j.conengprac.2010.08.009

  • Zhang F, Li P, Hou Z-G, Lu Z, Chen Y, Li Q, Tan M (2012) sEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomput 78(1):139–148. doi:10.1016/j.neucom.2011.05.033

    Google Scholar 

  • Zhang J, Yin Y (2012) SMA-based bionic integration design of self-sensor–actuator-structure for artificial skeletal muscle. Sens. Actuators A 181:94–102. doi:10.1016/j.sna.2012.05.017

  • Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R (2008) Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 89(3):422–429

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Malaya for providing the funds, Grant No: UM.C/HIR/MOHE/ENG/28 (D000028-16001) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. H. Bhuiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.S.H., Choudhury, I.A. & Dahari, M. Development of a control system for artificially rehabilitated limbs: a review. Biol Cybern 109, 141–162 (2015). https://doi.org/10.1007/s00422-014-0635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0635-1

Keywords

Navigation