Skip to main content
Log in

Illusion of extent evoked by closed two-dimensional shapes

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

In the present study, we have tested the applicability of the computational model of centroid extraction to account for the data collected in experiments with stimuli comprising of closed two-dimensional shapes. The outlined or uniformly filled pie-shaped circular sectors (contextual distractors) were arranged according to the Brentano pattern, and three different stimulus parameters (either the radius or the central angle or the tilt angle of the sectors) were used as independent variables in different series of experiments. It was demonstrated that the model calculations adequately predict the variations of illusion magnitude shown by all the subjects for all independent variables and that there is no significant difference between the data obtained for stimuli with the outlined and uniformly filled distractors. A good correspondence between the computational and experimental data provides convincing evidence in support of the “centroid” explanation of illusions of extent of the Müller–Lyer type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akutsu H, McGraw PV, Levi DM (1999) Alignment of separated patches: multiple location tags. Vis Res 39:789–801

    Article  CAS  PubMed  Google Scholar 

  • Anstis S, Gregory R, Heard P (2009) The triangle-bisection illusion. Perception 38(3):321–32

    Article  PubMed  Google Scholar 

  • Badcock DR, Hess RF, Dobbins K (1996) Localization of element clusters: multiple cues. Vis Res 36:1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Barrow HG, Tenenbaum JM (1981) Interpreting line drawings as three-dimensional surfaces. Artif Intell 17:75–116

    Article  Google Scholar 

  • Baud-Bovy G, Soechting J (2001) Visual localization of the center of mass of compact, asymmetric, two-dimensional shapes. J Exp Psychol Hum Percept Perform 27(3):692–706

    Article  CAS  PubMed  Google Scholar 

  • Brigell M, Uhlarik J, Goldhorn P (1977) Contextual influences on judgements of linear extent. J Exp Psychol Hum Percep Perform 3(1):105–118

    Article  CAS  Google Scholar 

  • Bulatov A, Bertulis A, Bielevičius A, Bulatova N (2009a) Interpretation of illusions of extent based on the centroid conception. Sensornye Sist 23(1):3–12 (in Russian)

    Google Scholar 

  • Bulatov A, Bertulis A, Bielevicius A, Loginovich Y (2009b) Distracter influence on the right angle perception. Zh Vyss Nerv Deiat Pavlova 59:259–268 (in Russian)

    CAS  Google Scholar 

  • Bulatov A, Bertulis A, Bulatova N, Loginovich Y (2009c) Centroid extraction and illusions of extent with different contextual flanks. Acta Neurobiol Exp (Wars) 69:504–525

    Google Scholar 

  • Bulatov A, Bertulis A, Gutauskas A, Bulatova N (2010a) Stimulus size and the magnitude of the visual illusion of extent. Hum Physiol 36(2):164–171

    Article  Google Scholar 

  • Bulatov A, Bertulis A, Gutauskas A, Mickiene L, Kadziene G (2010b) Center-of-mass alterations and visual illusions of extent. Biol Cybern 102:475–487

    Article  PubMed  Google Scholar 

  • Bulatov A, Bertulis A, Mickienė L, Surkys T, Bielevičius A (2011) Contextual flanks’ tilting and magnitude of illusion of extent. Vis Res 51(1):58–64

    Article  PubMed  Google Scholar 

  • Bulatov A, Bulatova N, Mickienė L, Bielevičius A (2013) Perceptual mislocalization of a single set of the Müller-Lyer wings. Acta Neurobiol Exp (Wars) 73:417–429

    Google Scholar 

  • Bulatov A, Bulatova N, Surkys T (2012) Perpendicularity misjudgments caused by contextual stimulus elements. Vis Res 71:1–9

    Article  PubMed  Google Scholar 

  • Coren S, Girgus JS, Erlichman H, Hakstian AR (1976) An empirical taxonomy of visual illusions. Percept Psychophys 20(2):129–137

    Article  Google Scholar 

  • Day RH (2006) Two principles of perception revealed by geometrical illusions. Aust J Psychol 58(3):123–129

    Article  Google Scholar 

  • DeLucia PR, Longmire SP, Kennish J (1994) Diamond-winged variants of the Muller-Lyer figure: a test of Virsu’s (1971) centroid theory. Percept Psychophys 55:287–295

    Article  CAS  PubMed  Google Scholar 

  • Di Maio V, Lansky P (1998) The Muller-Lyer illusion in interpolated figures. Percept Mot Skills 87:499–504

    Article  PubMed  Google Scholar 

  • Gillam B (1998) Illusions at century’s end. In: Hochberg J (ed) Perception and Cognition at Century’s End. Academic Press, San Diego, pp 95–136

    Chapter  Google Scholar 

  • Gregory RL (1968) Perceptual illusions and brain models. Proc R Sci Lond Ser B Biol Sci 171:279–296

    Article  CAS  Google Scholar 

  • Greist-Bousquet S, Schiffman HR (1981) The role of structural components in the Mueller-Lyer illusion. Percept Psychophys 30(5):505–511

    Article  CAS  PubMed  Google Scholar 

  • Hirsch J, Mjolsness E (1992) A center-of-mass computation describes the precision of random dot displacement discrimination. Vis Res 32:335–346

    Article  CAS  PubMed  Google Scholar 

  • Intriligator J, Cavanagh P (2001) The spatial resolution of visual attention. Cogn Psychol 43:171–216

    Article  CAS  PubMed  Google Scholar 

  • Levi DM (2008) Crowding—an essential bottleneck for object recognition: a mini-review. Vis Res 48(5):635–654

    Article  PubMed Central  PubMed  Google Scholar 

  • McGraw PV, Whitaker D, Badcock DR, Skillen J (2003) Neither here nor there: localizing conflicting visual attributes. J Vis 3:265–273

    Article  PubMed  Google Scholar 

  • Morgan MJ, Glennerster A (1991) Efficiency of locating centers of dot-clusters by human observers. Vis Res 31:2075–2083

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Hole GJ, Glennerster A (1990) Biases and sensitivities in geometrical illusions. Vis Res 30:1793–1810

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Melmoth D, Solomon JA (2013) Linking hypotheses underlying Class A and Class B methods. Vis Neurosci 30: 197–206

  • Morgan MJ, Ward RM, Cleary RF (1994) Motion displacement thresholds for compound stimuli predicted by the displacement of centroids. Vis Res 34:747–749

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Mackaben M (1989) Sustained and transient components of focal visual attention. Vis Res 29:1631–1647

    Article  CAS  PubMed  Google Scholar 

  • Nanay B (2009) Shape constancy, not size constancy: a (partial) explanation for the Müller-Lyer illusion. In: Taatgen NA, van Rijn H (eds) Proceedings of the 31st Annual Conference of the Cognitive Science Society. Lawrence Erlbaum, Mahwah, NJ, pp 579–584

    Google Scholar 

  • Predebon J (2001) Spatial range of illusory effects in Müller-Lyer figures. Psychol Res 65(4):226–234

    Article  CAS  PubMed  Google Scholar 

  • Pressey AW, Pressey CA (1992) Attentive fields are related to focal and contextual features: a study of Müller-Lyer distortions. Percept Psychophys 51:423–436

    Article  CAS  PubMed  Google Scholar 

  • Proffitt DR, Cutting JE (1980) Perceiving the centroid of curvilinearly bounded rolling shapes. Percept Psychophys 28:484–487

    Article  CAS  PubMed  Google Scholar 

  • Proffitt DR, Thomas MA, O’Brien RG (1983) The roles of contour and luminance distribution in determining perceived centers within shapes. Percept Psychophys 33(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Redding GM, Kramen AJ, Hankins JL (1997) The Müller-Lyer illusion as a consequence of picture perception. In: Schmuckler MA, Kennedy JM (eds) Studies in Perception and Action IV. Lawrence Erlbaum Associates, Mahwah, pp 11–14

    Google Scholar 

  • Redding GM, Vinson DW (2010) Virtual and drawing structures for the Müller-Lyer illusions. Atten Percept Psychophys 72(5):1350–1366

    Article  PubMed  Google Scholar 

  • Sagi D, Julesz B (1986) Enhanced detection in the aperture of focal attention during simple shape discrimination tasks. Nature 321:693–695

    Article  CAS  PubMed  Google Scholar 

  • Vos PG, Bocheva N, Yakimoff N, Helsper E (1993) Perceived locations in two-dimensional patterns. Vis Res 15:2157–2169

  • Wallis TSA, Bex PJ (2012) Image correlates of crowding in natural scenes. J Vis 12(7):1–19

  • Watt RJ, Morgan MJ (1984) Spatial filters and the localization of luminance changes in human vision. Vis Res 24:1387–1397

  • Watt RJ, Morgan MJ (1985) A theory of the primitive spatial code in human vision. Vis Res 25:1661–1674

    Article  CAS  PubMed  Google Scholar 

  • Whitaker D, McGraw PV, Pacey I, Barrett BT (1996) Centroid analysis predicts visual localization of first- and second-order stimuli. Vis Res 36:2957–2970

    Article  CAS  PubMed  Google Scholar 

  • Whitney D, Levi DM (2011) Visual crowding: a fundamental limit on conscious perception and object recognition. Trends Cogn Sci 15(4):160–168

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright JM, Morris AP, Krekelberg B (2011) Weighted integration of visual position information. J Vis 11(14):1–16

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Brian Marmion for his kind assistance throughout the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Bulatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, A., Bulatova, N., Loginovich, Y. et al. Illusion of extent evoked by closed two-dimensional shapes. Biol Cybern 109, 163–178 (2015). https://doi.org/10.1007/s00422-014-0633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-014-0633-3

Keywords

Navigation