Skip to main content
Log in

Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

This study aims to understand the principles of gait generation in a quadrupedal model. It is difficult to determine the essence of gait generation simply by observation of the movement of complicated animals composed of brains, nerves, muscles, etc. Therefore, we build a planar quadruped model with simplified nervous system and mechanisms, in order to observe its gaits under simulation. The model is equipped with a mathematical central pattern generator (CPG), consisting of four coupled neural oscillators, basically producing a trot pattern. The model also contains sensory feedback to the CPG, measuring the body tilt (vestibular modulation). This spontaneously gives rise to an unprogrammed lateral walk at low speeds, a transverse gallop while running, in addition to trotting at a medium speed. This is because the body oscillation exhibits a double peak per leg frequency at low speeds, no peak (little oscillation) at medium speeds, and a single peak while running. The body oscillation autonomously adjusts the phase differences between the neural oscillators via the feedback. We assume that the oscillations of the four legs produced by the CPG and the body oscillation varying according to the current speed are synchronized along with the varied phase differences to keep balance during locomotion through postural adaptation via the vestibular modulation, resulting in each gait. We succeeded in determining a single simple principle that accounts for gait transition from walking to trotting to galloping, even without brain control, complicated leg mechanisms, or a flexible trunk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alexander RM (1989) Optimization and gaits in the locomotion of vertebrates. Physiol Rev 69:1199–1227

    PubMed  CAS  Google Scholar 

  • Alexander RM (2003) Modelling approaches in biomechanics. Philos Trans R Soc B 358:1429–1435

    Article  Google Scholar 

  • Andersson O, Grillner S (1983) Peripheral control of the cat’s step cycle. II Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during fictive locomotion. Acta Physiol Scand 118:229–239

    Article  PubMed  CAS  Google Scholar 

  • Aoi S, Yamashita T, Tsuchiya K (2001) Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models. Phys Rev E 83:061909-1–061909-12

    Google Scholar 

  • Bal T, Nagy F, Moulins M (1988) The pyloric central pattern generator in Crustacea: a set of conditional neuronal oscillators. J Comp Physiol A 163:715–727

    Article  Google Scholar 

  • Bay JS, Hemami H (1987) Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Trans Biomed Eng 34:297–306

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA (1990) Biomechanics of mammalian terrestrial locomotion. Science 250:1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Billard A, Ijspeert AJ (2000) Biologically inspired neural controllers for motor control in a quadruped robot. Proc IEEE-INNS-ENNS Int Joint Conf Neural Netw 6:637–641

    Google Scholar 

  • Blickhan R, Full RJ (1993) Similarity in multilegged locomotion: bouncing like a monopode. J Comp Physiol A 173:509–517

    Article  Google Scholar 

  • Brown TG (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond Ser B 84:308–319

    Article  Google Scholar 

  • Buchli J, Ijspeert AJ (2004) Distributed central pattern generator model for robotics application based on phase sensitivity analysis. In: Proceedings of the first international workshop on the biologically inspired approaches to advanced information technology 2004, vol 3141, pp 333–349

  • Cavagna GA, Heglund NC, Taylor CR (1977) Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am J Physiol 233:R243–R261

    PubMed  CAS  Google Scholar 

  • Cham JG, Karpick J, Cutkosky MR (2004) Stride period adaptation for a biomimetic running hexapod. Int J Robotics Res 23:141–153

    Article  Google Scholar 

  • Cohen AH, Holmes PJ, Rand RH (1982) The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J Math Biol 13:345–369

    Article  PubMed  CAS  Google Scholar 

  • Cohen AH (1987) Effects of oscillator frequency on phase-locking in the lamprey central pattern generator. J Neurosci Methods 21:113–125

    Article  PubMed  CAS  Google Scholar 

  • Cohen AH, Boothe DL (1999) Sensorimotor interactions during locomotion: principles derived from biological systems. Auton Robots 7:239–245

    Google Scholar 

  • Collins JJ, Stewart IN (1993) Coupled nonlinear oscillators and the symmetries of animal gaits. J Nonlinear Sci 3:349–392

    Article  Google Scholar 

  • Collins JJ, Richmond SA (1994) Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern 71:375–385

    Article  Google Scholar 

  • Ekeberg Ö, Wallén P, Lansner A, Tråvén H, Brodin L, Grillner S (1991) A computer based model for realistic simulations of neural networks. I. The single neuron and synaptic interaction. Biol Cybern 65:81–90

    Article  PubMed  CAS  Google Scholar 

  • Ekeberg Ö (1993) A combined neuronal and mechanical model of fish swimming. Biol Cybern 69:363–374

    Google Scholar 

  • Farley CT, Taylor CR (1991) A mechanical trigger for the trot-gallop transition in horses. Science 253:306–308

    Article  PubMed  CAS  Google Scholar 

  • Frigon A, Gossard JP (2009) Asymmetric control of cycle period by the spinal locomotor rhythm generator in the adult cat. J Physiol 587:4617–4628

    Article  PubMed  CAS  Google Scholar 

  • Fukuoka Y, Kimura H, Cohen AH (2003) Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robotics Res 22:187–202

    Article  Google Scholar 

  • Geyer H, Seyfarth A, Blickhan R (2006) Compliant leg behaviour explains basic dynamics of walking and running. Proc R Soc B 273:2861–2867

    Article  PubMed  Google Scholar 

  • Golubitsky M, Stewart I, Buono PL, Collins JJ (1999) Symmetry in locomotor central pattern generators and animal gaits. Nature 401:693–695

    Article  PubMed  CAS  Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology, the nervous system, motor control, vol 2. American Physiological Society, Bethesda, Maryland, pp 1179–1236

  • Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228:143–149

    Article  PubMed  CAS  Google Scholar 

  • Harischandra N, Knuesel J, Kozlov A, Bicanski A, Cabelguen JM, Ijspeert A, Ekeberg Ö (2011) Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: a simulation study. Frontiers in Neurorobotics 5:1–13

    Article  Google Scholar 

  • Hase K, Yamazaki N (1988) Computational evolution of human bipedal walking by a neuro-musculo-skeletal model. Artif Life Robotics 3:133–138

    Article  Google Scholar 

  • Hauser H, Neumann G, Ijspeert AJ, Maass W (2011) Biologically inspired kinematic synergies enable linear balance control of a humanoid robot. Biol Cybern 104:235–249

    Article  PubMed  Google Scholar 

  • Hildebrand M (1965) Symmetrical gaits of horses. Science 150:701–708

    Article  PubMed  CAS  Google Scholar 

  • Howell AB (1944) Speed in animals; their specialization for running and leaping. Hafner Pub. Co., New York

    Google Scholar 

  • Hoyt DF, Taylor CR (1981) Gait and the energetics of locomotion in horses. Nature 292:239–240

    Article  Google Scholar 

  • Ito S, Yuasa H, Luo ZW, Ito M, Yanagihara D (1998) A mathematical model of adaptive behavior in quadruped locomotion. Biol Cybern 78:337–347

    Article  PubMed  CAS  Google Scholar 

  • Koditschek DE, Full RJ, Buehler M (2004) Mechanical aspects of legged locomotion control. Arthropod Struct Dev 33:251–272

    Article  PubMed  Google Scholar 

  • Kotosaka S, Schaal S (2000). Synchronized robot drumming by neural oscillator. In: Proceedings of the international symposium on adaptive motion of animals and machines

  • Lam T, Pearson KG (2002) The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Adv Exp Med Biol 508:343–355

    Article  PubMed  Google Scholar 

  • Lasa M, Buehler M (2001) Dynamic compliant quadruped walking. Proc IEEE Int Conf Robotics Autom 3:3153–3158

    Google Scholar 

  • Maes LD, Herbin M, Hackert R, Bels VL, Abourachid A (2008) Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed. J Exp Biol 211:138–149

    Article  PubMed  Google Scholar 

  • Matsubara T, Morimoto J, Nakanishi J, Sato M, Doya K (2006) Learning CPG-based biped locomotion with a policy gradient method. Robotics Auton Syst 54:911–920

    Article  Google Scholar 

  • Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52:367–376

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm generators. Biol Cybern 56:345–353

    Article  PubMed  CAS  Google Scholar 

  • Maufroya C, Kimura H, Takase K (2008) Towards a general neural controller for quadrupedal locomotion. Neural Netw 21:667–681

    Article  Google Scholar 

  • Maufroya C, Kimura H, Takase K (2010) Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Auton Robots 28:331–353

    Article  Google Scholar 

  • McMahon TA (1985) The role of compliance in mammalian running gaits. J Exp Biol 115:263–282

    PubMed  CAS  Google Scholar 

  • Michel O (2004) Cyberbotics Ltd. WebotsTM: professional mobile robot simulation. Int J Adv Robotic Syst 1:2004

    Google Scholar 

  • Miller LA, Goldman DI, Hedrick TL, Tytell ED, Wang ZJ, Yen J, Alben S (2012) Using Computational and mechanical models to study animal locomotion. Integr Comp Biol 52:553–575

    Google Scholar 

  • Miyakoshi S, Yamakita M, Furuta K (1994) Juggling control using neural oscillators. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 1186–1193

  • Muybridge E (1957) Animals in motion. Dover Publications, Mineola

  • Nakatani K, Sugimoto Y, Osuka K (2009) Demonstration and analysis of quadrupedal passive dynamic walking. Adv Robotics 23:483–501

    Article  Google Scholar 

  • Owaki D, Morikawa L, Ishiguro A (2012). Gait transition of quadruped robot without interlimb neural connections. In: Proceedings of dynamic walking 2012

  • Pearson KG (1985) Are there central pattern generators for walking and flight in insects? In: Barnes WJP, Gladden MH (eds) Feedback and motor control in invertebrates and vertebrates, pp 307–315

  • Pelc EH, Daley MA, Ferris DP (2008) Resonant hopping of a robot controlled by an artificial neural oscillator. Bioinsp Biomim 3:260–261

    Article  Google Scholar 

  • Poulakakis I, Papadopoulos E, Buehler M (2006) On the stability of the passive dynamics of quadrupedal running with a bounding gait. Int J Robotics Res 25:669–687

    Article  Google Scholar 

  • Raibert MH (1986) Legged robots that balance. MIT Press, Cambridge

  • Roberts TDM (1967) Neurophysiology of postural mechanisms. Butterworth, Oxford

  • Rutishauser S, Sproewitz A, Righetti L, Ijspeert AJ (2008) Passive compliant quadruped robot using central pattern generators for locomotion control. In: Proceedings of the international conference on biomedical robotics and biomechatronics, pp 710–715

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577:617–639

    Article  PubMed  CAS  Google Scholar 

  • Santos CP, Matos V (2011) Gait transition and modulation in a quadruped robot: a brainstem-like modulation approach. Robotics Auton Syst 59:620–634

    Article  Google Scholar 

  • Schmiedeler JP, Waldron KJ (1999) The mechanics of quadrupedal galloping and the future of legged vehicles. Int J Robotic Res 18:1224–1234

    Article  Google Scholar 

  • Schöner G, Jiang WY, Kelso JAS (1990) A synergetic theory of quadrupedal gaits and gait transitions. J Theor Biol 142:359–391

    Article  PubMed  Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765

    Google Scholar 

  • Stafford FS, Barnwell GM (1985) Mathematical models of central pattern generators in locomotion: III. Interlimb model for the cat. J Motor Behav 17:60–76

    Article  CAS  Google Scholar 

  • Stent GS, Kristan WB Jr, Friesen WO, Ort CA, Poon M, Calabrese RL (1978) Neuronal generation of the leech swimming movement. Science 200:1348–1357

    Article  PubMed  CAS  Google Scholar 

  • Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait. Biol Cybern 73:97–111

    Article  PubMed  CAS  Google Scholar 

  • Taga G (1995) A model of the neuro-musculo-skeletal system for human locomotion. II. Real-time adaptability under various constraints. Biol Cyberns 73:113–121

    Article  CAS  Google Scholar 

  • Tellez LHR, Michel O, Ijspeert A (2006) Aibo and webots: simulation, wireless remote control and controller transfer. Robotics Auton Syst 54:472–485

    Article  Google Scholar 

  • Tsujita K, Tsuchiya K, Onat A (2001) Adaptive gait pattern control of a quadruped locomotion robot. In: Proceedings of the 2001 IEEE/RSJ international conference on intelligent robots and systems 2001, pp 2318–2325

  • Tsujita K, Kobayashi T, Inoura T, Masuda T (2008) Gait transition by tuning muscle tones using pneumatic actuators in quadruped locomotion. In: Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems, pp 2453–2458

  • Tytell ED, Cohen AH (2008) Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion. J Neurophysiol 99:2408–2419

    Article  PubMed  Google Scholar 

  • Williamson MM (1998) Neural control of rhythmic arm movements. Neural Netw 11:1379–1394

    Article  PubMed  Google Scholar 

  • Willis JB (1980) On the interaction between spinal locomotor generators in quadrupeds. Brain Res 2:171–204

    Article  Google Scholar 

  • Yuasa H, Ito M (1990) Coordination of many oscillators and generation of locomotory patterns. Biol Cybern 63:177–184

    Article  Google Scholar 

Download references

Acknowledgments

The authors declare no competing financial interests. This work was supported by Japan Society for the Promotion of Science (Grant-in-Aid for Young Scientists (B)) and Ibaraki University (Life Support Project). We would like to thank Kazuyoshi Mori, Naoji Shiroma, and Kosuke Inoue for their valuable comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Fukuoka.

Appendix

Appendix

The neural oscillator model used for each leg of our quadruped models was governed by the following set of differential equations. These equations are based on Matsuoka’s neural oscillator model Matsuoka (1985, 1987):

$$\begin{aligned} T_r \dot{u}_{\mathrm{e}i} + u_{\mathrm{e}i}&= - \sum _{j=1}^4 (p_{ij}[u_{\mathrm{e}j}]^{+} + q_{ij}[u_{\mathrm{f}j}]^+) + s \nonumber \\&- b v_{\mathrm{e}i} + \hbox {feed}1_{\mathrm{e}i} + \hbox {feed}2_{\mathrm{e}i} , \end{aligned}$$
(1)
$$\begin{aligned} T_a \dot{v}_{\mathrm{e}i} + v_{\mathrm{e}i}&= y_{\mathrm{e}i}, \end{aligned}$$
(2)
$$\begin{aligned} y_{\mathrm{e}i}&= [u_{\mathrm{e}i}]^+ = \max \,\,(u_{\mathrm{e}i}, 0), \end{aligned}$$
(3)
$$\begin{aligned} T_r \dot{u}_{\mathrm{f}i} + u_{\mathrm{f}i}&= - \sum _{j=1}^4 (p_{ij}[u_{\mathrm{f}j}]^{+} + q_{ij}[u_{\mathrm{e}j}]^+) + s \nonumber \\&- b v_{\mathrm{f}i} + \hbox {feed}1_{\mathrm{f}i} + \hbox {feed}2_{\mathrm{f}i}, \end{aligned}$$
(4)
$$\begin{aligned} T_a \dot{v}_{\mathrm{f}i} + v_{\mathrm{f}i}&= y_{\mathrm{f}i}, \end{aligned}$$
(5)
$$\begin{aligned} y_{\mathrm{f}i}&= [u_{\mathrm{f}i}]^+ = \max \,\,(u_{\mathrm{f}i}, 0), \end{aligned}$$
(6)
$$\begin{aligned} P_{i,j}&= \left[ \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} 0 &{} \beta &{} \alpha &{} 0 \\ \beta &{} 0 &{} 0 &{} \alpha \\ \alpha &{} 0 &{} 0 &{} \beta \\ 0 &{} \alpha &{} \beta &{} 0 \end{array} \right] , Q_{i,j} = \left[ \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} \gamma &{} 0 &{} 0 &{} 0 \\ 0 &{} \gamma &{} 0 &{} 0 \\ 0 &{} 0 &{} \gamma &{} 0\\ 0&{}0 &{}0 &{}\gamma \end{array} \right] \nonumber \\ \end{aligned}$$
(7)

and

$$\begin{aligned} y_i = y_{\mathrm{f}i} - y_{\mathrm{e}i}, \end{aligned}$$
(8)

where the suffix \(i\) denotes the number of leg (i.e., 1: left fore; 2: left hind; 3: right fore; 4: right hind); the suffixes e and f mark the extensor and flexor, respectively. The terms \(u_{\mathrm{e}i}\) and \(u_{\mathrm{f}i}\) indicate an inner state modeled on a membrane potential of the extensor and flexor neurons of the \(i\)th leg, respectively, and \(v_{\mathrm{e}i}\) and \(v_{\mathrm{f}i}\) indicate the variable representing the degree of fatigue or adaptation in the extensor and flexor neurons of the \(i\)th leg, respectively. Meanwhile, \(s\) is a tonic descending signal strength; \(\hbox {feed}1_{\{\mathrm{e,f}\}i}\) and \(\hbox {feed}2_{\{\mathrm{e,f}\}i}\) represent sensory feedback inputs (e.g., \(\hbox {feed}1_{\mathrm{e}i}\) is a feedback to the extensor neuron of the \(i\)th leg); \(y_{\mathrm{e}i}\) and \(y_{\mathrm{f}i}\) are the outputs of the extensor and flexor neurons of the \(i\)th leg, which are discontinuous terms via Eqs. (3) and (6); and \(y_i\) is the output of the oscillator of the \(i\)th leg, as shown by the patterns in Fig. 3 in the main text. The constants \(T_r\) and \(T_a\) are time constants of the inner state and the adaptation variable to determine the intrinsic frequency of the oscillator, and \(b\) is a constant related to the recurrent inhibition of the inner state. Finally, \(\sum _{j=1}^4 (p_{ij}[u_{\{\mathrm{e,f}\}j}]^+ + q_{ij}[u_{\{\mathrm{f,e}\}j}]^+)\) represents the inhibitory synaptic inputs from the neurons of the legs, such as in Fig. 5 in the main text, where their strengths \(p_{ij}\) and \(q_{ij}\) are shown in Eq. (7). The essential gait pattern is produced by this term.

The sensory feedback inputs in Eqs. (1) and (4) are defined as

$$\begin{aligned} \begin{aligned} \hbox {feed}1_{\mathrm{e}i}&= k_1(\theta _i - \theta _0),\quad \hbox {and}\\ \hbox {feed}1_{\mathrm{f}i}&= -k_1(\theta _i - \theta _0) \end{aligned} \end{aligned}$$
(9)

where \(k_1 C \theta _i\) and \(\theta _0\) are the weight, the present hip joint angle of the \(i\)th leg, and the origin of each hip joint angle, respectively, as shown in Fig. 16. Next:

$$\begin{aligned} \begin{aligned} \hbox {feed}2_{\mathrm{e}i}&= \sigma (leg)\ k_2 \phi ,\quad \hbox {and}\\ \hbox {feed}2_{\mathrm{f}i}&= -\sigma (leg)\ k_2 \phi \end{aligned} \end{aligned}$$
(10)

and:

$$\begin{aligned} \sigma (leg) = \left\{ \begin{array}{l@{\quad }l} 1, &{} \text{ if }\quad \hbox {leg} \,\hbox {is a fore leg} (i=1\,or\,3); \\ -1, &{} \text{ if }\quad \hbox {leg} \,\hbox {is a hind leg} (i=2\,or\,4) \end{array} \right. \end{aligned}$$

where \(\phi \) denotes a body inclination angle around the pitch axis as shown in Fig. 16, and \(k_2\) is the strength of vestibular modulation.

Fig. 16
figure 16

A diagram of the quadruped model

The equations of the proportional-derivative (PD) controllers used in the leg controller section in Fig. 4 in the main text will now be introduced. The PD control of each hip joint is shown as:

$$\begin{aligned} \tau _{i} = K^\tau _{pi\cdot \{\mathrm{sw}, \mathrm{st}\}} (\theta _{di\cdot \{\mathrm{sw}, \mathrm{st}\}} - \theta _i) - K^\tau _{vi\cdot \{\mathrm{sw}, \mathrm{st}\}} \dot{\theta }_i, \end{aligned}$$
(11)

where \(\tau _{i}, \,\theta _i\) and \(\dot{\theta }_i\) are the output torque, the present angle, and the present angular velocity of the hip joint of the \(i\)th leg in Fig. 16, respectively. The terms \(\theta _{di\cdot \{\mathrm{sw}, \mathrm{st}\}}\) are the target hip joint angles in the swing/stance phase (Fig. 4 in the main text), and \(K^\tau _{pi\cdot \{\mathrm{sw}, \mathrm{st}\}}\) and \(K^\tau _{vi\cdot \{\mathrm{sw}, \mathrm{st}\}}\) represent proportional and derivative gains (P and D gains) in the swing/stance phase. The PD control of each linear knee joint is shown as:

$$\begin{aligned} F_{i} = K^F_{pi\cdot \{\mathrm{sw}, \mathrm{st}\}} (l_{di\cdot \{\mathrm{sw}, \mathrm{st}\}} - l_i) - K^F_{vi\cdot \{\mathrm{sw}, \mathrm{st}\}} \dot{l}_i, \end{aligned}$$
(12)

where \(F_{i}, \,l_i\) and \(\dot{l}_i\) are the output force, the present length, and the present velocity of the linear knee joint of the \(i\)th leg in Fig. 16, respectively; \(l_{di\cdot \{\mathrm{sw}, \mathrm{st}\}}\) are the target lengths of the linear knee joints in the swing/stance phase (Fig. 4 in the main text), and \(K^F_{pi\cdot \{\mathrm{sw}, \mathrm{st}\}}\) and \(K^F_{vi\cdot \{\mathrm{sw}, \mathrm{st}\}}\) represent P and D gains in the swing/stance phase.

The values of the parameters in the equations were empirically determined such that the quadruped model could walk and run safely at each chosen speed. For a selected speed, all the values are constant. However, the values of \(s, T_r, \theta _{d \cdot \mathrm{st}}, K^\tau _{pi\cdot \mathrm{st}}, K^F_{pi\cdot \mathrm{st}}\) and \(K^F_{pi\cdot \mathrm{sw}}\) are set according to the selected speed. All other values are constant irrespective of changes in the speed. For example, we show the values of the parameters in Table 1 when the quadruped model is walking with a walk gait at 0.3 m/s.

Table 1 Values of the parameters used in a simulation where the quadruped model is walking with a walk gait at 0.3 m/s

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuoka, Y., Habu, Y. & Fukui, T. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation. Biol Cybern 107, 695–710 (2013). https://doi.org/10.1007/s00422-013-0572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-013-0572-4

Keywords

Navigation