Skip to main content
Log in

Spatial heterogeneity of passive electrical transfer properties of neuronal dendrites due to their metrical asymmetry

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The complex and diverse geometry of neuronal dendrites determines the different morphological types of neurons and influences the generation of complex and diverse discharge patterns at the cell output. The recent finding that each temporal pattern has its spatial signature in the form of a combination of high- and low-depolarization states of asymmetrical dendritic branches with active membrane properties raises the question of the nature of such characteristic spatial heterogeneity of electrical states. To answer this, we consider passive dendrites as a conventional reference case using the known current transfer functions, which we complete by corresponding parametric sensitivity functions. These functions for metrically asymmetrical bifurcations of different sizes, as the simplest elements constituting arborizations of arbitrary geometry, are analyzed under different membrane conductivity conditions related to the intensity of activation of ion channels. Characteristic relationships are obtained on the one hand among the size (branch lengths), metrical asymmetry (difference between sister branches in length and/or diameter), and membrane conductivity, and on the other hand, for the difference between the branches in their current transfer effectiveness as an indicator of their electrical asymmetry (heterogeneity). These relationships (i) allow the introduction of a biophysically based criterion for the electrical distinction between metrically asymmetrical branches, (ii) show how the difference first increases and then decreases with increasing membrane conductivity, and (iii) show that the greatest electrical heterogeneity occurs in a lower or higher range of conductivity, corresponding to larger or smaller bifurcation size. As a consequence, the characteristic low-, medium-, and high-conductance states are derived such that metrically asymmetrical parts of simple and complex trees are electrically distinct when the membrane conductivity lies in the size-related medium range, and indistinct otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LF (1991) Realistic synaptic inputs for model neural networks. Network 2: 245–258

    Article  Google Scholar 

  • Barrett JN, Crill WE (1974) Influence of dendritic location and membrane properties on the effectiveness of synapses of cat motoneurones. J Physiol 239: 325–345

    PubMed  CAS  Google Scholar 

  • Bernander Ö, Douglas RJ, Martin KAC, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA 88:11,569–11,573

    Google Scholar 

  • Birinyi A, Antal M, Székely G (1992) The extent of the dendritic tree and the number of synapses in the frog motoneuron. Eur J Neurosci 4: 1003–1012

    Article  PubMed  Google Scholar 

  • Bras H, Lahjouji F, Korogod SM, Kulagina IB, Barbe A (2003) Heterogeneous synaptic covering and differential charge transfer sensitivity among the dendrites of a reconstructed abducens motor neurone: Correlations between electron microscopic and computer simulation data. J Neurocytol 32: 5–24

    Article  PubMed  Google Scholar 

  • Burke RE, Fyffe REW, Moschovakis AK (1994) Electrotonic architecture of cat gamma motoneurons. J Neurophysiol 72(5): 2302–2316

    PubMed  CAS  Google Scholar 

  • Cannon RC, Wheal HV, Turner DA (1999) Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J Comp Neurol 413: 619–633

    Article  PubMed  CAS  Google Scholar 

  • Carnevale N, Tsai K, Claiborne B, Brown T (1997) Comparative electrotonic analysis of three classes of rat hippocampal neurons. J Neurophysiol 78(2): 703–720

    PubMed  CAS  Google Scholar 

  • Carnevale NT, Johnston D (1982) Electrophysiological characterization of remote chemical synapses. J Neurophysiol 47(4): 606–621

    PubMed  CAS  Google Scholar 

  • Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4: 739–751

    Article  PubMed  CAS  Google Scholar 

  • Filipchuk AA, Durand J, Korogod SM (2008) Charge transfer effectiveness as an electrotonic indicator of the structural differences between samples of dendritic morphology. Neurophysiology 40(5/6): 497–501

    Google Scholar 

  • Hines ML, Carnevale NT (1997) The neuron simulation environment. Neural Comput 9: 1179–1209

    Article  PubMed  CAS  Google Scholar 

  • Hô N, Destexhe A (2000) Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. J Neurophysiol 84: 1488–1496

    PubMed  Google Scholar 

  • Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon, Oxford

    Google Scholar 

  • Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82: 3268–3285

    PubMed  CAS  Google Scholar 

  • Koch C, Poggio T, Torre V (1982) Retinal ganglion cells: a functional interpretation of dendritic morphology. Philos Trans R Soc Lond B 298: 227–264

    Article  CAS  Google Scholar 

  • Komendantov OA, Ascoli GA (2009) Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. J Neurophysiol 101: 1847–1866

    Article  PubMed  Google Scholar 

  • Korogod SM (1996) Electro-geometrical coupling in non-uniform branching dendrites. Biol Cybern 74: 85–93

    Article  PubMed  CAS  Google Scholar 

  • Korogod SM, Kaspirzhny AV (2008) Parameter sensitivity of distributed transfer properties of neuronal dendrites: a passive cable approximation. Biol Cybern 98(2): 87–100

    Article  PubMed  Google Scholar 

  • Korogod SM, Tyč-Dumont S (2009) Electrical dynamics of the dendritic space. Cambridge University Press

  • Korogod SM, Bras H, Sarana VN, Gogan P, Tyč-Dumont S (1994) Electrotonic clusters in the dendritic arborization of abducens motoneurons of the rat. Eur J Neurosci 6: 1517–1527

    Article  PubMed  CAS  Google Scholar 

  • Korogod SM, Kulagina IB, Horcholle-Bossavit G, Gogan P, Tyč-Dumont S (2000) Activity-dependent reconfiguration of the effective dendritic field of motoneurons. J Comp Neurol 422: 18–34

    Article  PubMed  CAS  Google Scholar 

  • Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941(1–2): 11–28

    Article  PubMed  CAS  Google Scholar 

  • Kulagina IB, Korogod SM, Horcholle-Bossavit G, Batini C, Tyč-Dumont S (2007) The electro-dynamics of the dendritic space in purkinje cells of the cerebellum. Arch Ital Biol 145: 211–233

    PubMed  CAS  Google Scholar 

  • London M, Meunier C, Segev I (1999) Signal transfer in passive dendrites with nonuniform membrane conductance. J Neurosci 19(19): 8219–8233

    PubMed  CAS  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382: 363–366

    Article  PubMed  CAS  Google Scholar 

  • Matlab (2000) Using MATLAB. The Mathworks, Inc.

  • Mel BW (1994) Information processing in dendritic trees. Neural Comput 6: 1031–1085

    Article  Google Scholar 

  • Polsky A, Mel BW, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci 7(6): 621–627

    Article  PubMed  CAS  Google Scholar 

  • Pyapali GK, Sik A, Penttonen M, Buzsaki G, Turner DA (1998) Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: intracellular staining in vivo and in vitro. J Comp Neurol 391: 335–352

    Article  PubMed  CAS  Google Scholar 

  • Rudolph M, Hô N, Destexhe A (2001) Synaptic background activity affects the dynamics of dendritic integration in model neocortical pyramidal neurons. Neurocomputing 38–40:327–333

    Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87: 387–406

    PubMed  CAS  Google Scholar 

  • Tsypkin YZ (1977) The foundation of the theory of automatic systems. Nauka, Moscow

    Google Scholar 

  • van Ooyen A, Duijnhouwer J, Remme MWH, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Netw Comput Neural Syst 13:311–325

    Google Scholar 

  • van Pelt J (1992) A simple vector implementation of the laplace-transformed cable equations in passive dendritic trees. Biol Cybern 68: 15–21

    Article  PubMed  Google Scholar 

  • van Pelt J, Schierwagen A (1994) Electrotonic properties of passive dendritic trees—effect of dendritic topology. Prog Brain Res 102: 127–149

    Article  PubMed  Google Scholar 

  • Woolf TB, Shepherd GM, Greer CA (1991) Local information processing in dendritic trees: subsets in granule cells of the mammalian olfactory bulb. J Neurosci 1(6): 1837–1854

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Kaspirzhny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korogod, S.M., Kaspirzhny, A.V. Spatial heterogeneity of passive electrical transfer properties of neuronal dendrites due to their metrical asymmetry. Biol Cybern 105, 305–317 (2011). https://doi.org/10.1007/s00422-011-0467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0467-1

Keywords

Navigation