Skip to main content
Log in

Dynamical estimation of neuron and network properties I: variational methods

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We present a method for using measurements of membrane voltage in individual neurons to estimate the parameters and states of the voltage-gated ion channels underlying the dynamics of the neuron’s behavior. Short injections of a complex time-varying current provide sufficient data to determine the reversal potentials, maximal conductances, and kinetic parameters of a diverse range of channels, representing tens of unknown parameters and many gating variables in a model of the neuron’s behavior. These estimates are used to predict the response of the model at times beyond the observation window. This method of \({{\tt data\, assimilation}}\) extends to the general problem of determining model parameters and unobserved state variables from a sparse set of observations, and may be applicable to networks of neurons. We describe an exact formulation of the tasks in nonlinear data assimilation when one has noisy data, errors in the models, and incomplete information about the state of the system when observations commence. This is a high dimensional integral along the path of the model state through the observation window. In this article, a stationary path approximation to this integral, using a variational method, is described and tested employing data generated using neuronal models comprising several common channels with Hodgkin–Huxley dynamics. These numerical experiments reveal a number of practical considerations in designing stimulus currents and in determining model consistency. The tools explored here are computationally efficient and have paths to parallelization that should allow large individual neuron and network problems to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarbanel HD (2009) Effective actions for statistical data assimilation. Phys Lett A 373(44): 4044–4048

    Article  CAS  Google Scholar 

  • Abarbanel HD (2011) Self consistent model errors. Q J Roy Meteor Soc submitted

  • Abarbanel HDI, Creveling DR, Farsian R, Kostuk M (2009) Dynamical state and parameter estimation. SIAM J Appl Dyn Syst 8(4): 1341–1381

    Article  Google Scholar 

  • Abarbanel HDI, Bryant P, Gill PE, Kostuk M, Rofeh J, Singer Z, Toth B, Wong E (2011) Dynamical parameter and state estimation in neuron models, Chap 8. In: Ding M, Glanzman DL (eds) The Dynamic Brain, Oxford University Press, pp 139–180

  • Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower J, Diesmann M, Morrison A, Goodman P, Harris F, Zirpe M, Natschläger T, Pecevski D, Ermentrout B, Djurfeldt M, Lansner A, Rochel O, Vieville T, Muller E, Davison A, El Boustani S, Destexhe A (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comp Neurosci 23: 349–398

    Article  Google Scholar 

  • Creveling DR, Gill PE, Abarbanel HD (2008) State and parameter estimation in nonlinear systems as an optimal tracking problem. Phys Lett A 372(15): 2640–2644

    Article  CAS  Google Scholar 

  • Evensen G (2009) Data assimilation: the ensemble Kalman filter. 2. Springer, Berlin

    Google Scholar 

  • Fano R (1961) Transmission of information: a statistical theory of communications. The MIT Press, Cambridge

    Google Scholar 

  • Gill P, Barclay A, Rosen JB (1998) Sqp methods and their application to numerical optimal control. In: Bulirsch R, Bittner L, Schmidt WH, Heier K (eds) Variational calculus, optimal control and applications, international series of numerical mathematics, vol 124. Birkhauser, Basel, Boston and Berlin, pp 207–222

    Google Scholar 

  • Gill P, Murray W, Saunders M (2005) Snopt: an sqp algorithm for large-scale constrained optimization. SIAM Rev 47(1): 99–131

    Article  Google Scholar 

  • Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic Press, London

    Google Scholar 

  • Graham L (2002) Modelling neuronal biophysics. In: Arbib MA (eds) The handbook for brain theory and neural networks. MIT Press, Cambridge, pp 164–170

    Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2): 85–100

    Article  PubMed  CAS  Google Scholar 

  • Huys QJM, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96(2): 872–890

    Article  PubMed  Google Scholar 

  • Johnston D, Wu SMS (1995) Foundations of cellular neurophysiology. MIT Press, Cambridge

    Google Scholar 

  • Kirk DE (2004) Optimal control theory: an introduction. Dover Publications, Mineola

    Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Kostuk M, Toth B, Meliza CD, Abarbanel HDI, Margoliash D (2011) Dynamical estimation of neuron and network properties II: Monte carlo methods. Biol Cybern (in preparation)

  • Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDI (2001) Odor encoding as an active dynamical process: experiments, computation, and theory. Annu Rev Neurosci 24: 293–297

    Article  Google Scholar 

  • Quinn JC, Abarbanel HD (2010) State and parameter estimation using monte carlo evaluation of path integrals. Q J Roy Meteor Soc 136(652): 1855–1867

    Article  Google Scholar 

  • Stein PSG, Grillner S, Selverston AI, Stuart DG (eds) (1997) Neurons, Networks, and Motor Behavior. MIT Press, Cambridge

  • Toth B (2010) Dynamical estimation of neuron and network properties. SIAG/OPT Views-and-News 21(1): 1–8

    Google Scholar 

  • Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Prog 106(1): 25–57

    Article  Google Scholar 

  • Zinn-Justin J (2002) Quantum field theory and critical phenomena. 4. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry D. I. Abarbanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toth, B.A., Kostuk, M., Meliza, C.D. et al. Dynamical estimation of neuron and network properties I: variational methods. Biol Cybern 105, 217–237 (2011). https://doi.org/10.1007/s00422-011-0459-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0459-1

Keywords

Navigation