Skip to main content
Log in

Enhancement of information transmission of sub-threshold signals applied to distal positions of dendritic trees in hippocampal CA1 neuron models with stochastic resonance

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Stochastic resonance (SR) has been shown to enhance the signal-to-noise ratio and detection of low level signals in neurons. It is not yet clear how this effect of SR plays an important role in the information processing of neural networks. The objective of this article is to test the hypothesis that information transmission can be enhanced with SR when sub-threshold signals are applied to distal positions of the dendrites of hippocampal CA1 neuron models. In the computer simulation, random sub-threshold signals were presented repeatedly to a distal position of the main apical branch, while the homogeneous Poisson shot noise was applied as a background noise to the mid-point of a basal dendrite in the CA1 neuron model consisting of the soma with one sodium, one calcium, and five potassium channels. From spike firing times recorded at the soma, the mutual information and information rate of the spike trains were estimated. The simulation results obtained showed a typical resonance curve of SR, and that as the activity (intensity) of sub-threshold signals increased, the maximum value of the information rate tended to increased and eventually SR disappeared. It is concluded that SR can play a key role in enhancing the information transmission of sub-threshold stimuli applied to distal positions on the dendritic trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abenavoli A, Forti L, Bossi M, Bergamaschi A, Villa A, Malgaroli A (2002) Multimodal quantal release at individual hippocampal synapses: evidence for no lateral inhibition. J Neurosci 22: 6336–6346

    CAS  PubMed  Google Scholar 

  • Axmacher N, Mormann F, Fernandez G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52: 170–182

    Article  PubMed  Google Scholar 

  • Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A 14: L453–457

    Article  Google Scholar 

  • Brette R, Guigon E (2003) Reliability of spike timing is a general property of spiking model neurons. Neural Comput 15: 279–308

    Article  PubMed  Google Scholar 

  • Bulsara A, Zador A (1996) Threshold detection of wideband signals: a noise-induced maximum in the mutual information. Phys Rev E 54: R2185–R2188

    Article  CAS  Google Scholar 

  • Bulsara A, Jacobs E, Zhou T, Moss F, Kiss L (1991) Stochastic resonance in a single neuron model: theory and analog simulation. J Theor Biol 152: 531–555

    Article  CAS  PubMed  Google Scholar 

  • Collins J, Imhoff T, Grigg T (1996) Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol 76: 642–645

    CAS  PubMed  Google Scholar 

  • Cook EP, Johnston D (1997) Active dendrites reduce location-dependent variability of synaptic input trains. J Neurophysiol 78: 2116–2128

    CAS  PubMed  Google Scholar 

  • Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Methuen, London

    Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. The MIT Press, Cambridge, MA

    Google Scholar 

  • Deco G, Schumann B (1997) Stochastic resonance in the mutual information between input and output spike trains of noisy central neurons. Phys D 117: 276–282

    Article  Google Scholar 

  • de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275(5307): 1805–1808

    Article  PubMed  Google Scholar 

  • Destexhe A, Pare D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81: 1531–1547

    CAS  PubMed  Google Scholar 

  • Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev 4: 739–751

    Article  CAS  Google Scholar 

  • Douglass J, Wilkins L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365: 337–340

    Article  CAS  PubMed  Google Scholar 

  • Gammaitoni L, Hanggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70: 223–287

    Article  CAS  Google Scholar 

  • Kish LB, Harmer GP, Abbott D (2001) Information transfer rate of neurons: stochastic resonance of Shannonś information capacity. Fluctuation Noise Lett 1: L13–L19

    Article  Google Scholar 

  • Magee J, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268: 301–304

    Article  CAS  PubMed  Google Scholar 

  • Moss F (2000) Stochastic resonance: looking forward. In: Walleczek J (eds) Self-organized biological dynamics & nonlinear control. Cambridge University Press, Cambridge, pp 236–256

    Chapter  Google Scholar 

  • Moss F, Pierson D, O’Gorman D (1994) Stochastic resonance: tutorial and update. Int J Bifurc Chaos 6: 1383–1397

    Google Scholar 

  • Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: a tutorial and review of application. Clin Neurophys 115: 267–281

    Article  Google Scholar 

  • Nicolis C (1982) Stochastic aspects of climatic transitions—response to periodic forcing. Tellus 34: 1–9

    Article  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W (1997) Spikes: exploring the neural code. The MIT Press, Cambridge, MA

    Google Scholar 

  • Scott DW (1979) On optimal and data-based histograms. Biometrika 66: 605–610

    Article  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Proc IRE 37: 10–21

    Article  Google Scholar 

  • Simonotto E, Riani M, Seife C, Roberts M, Twitty J, Moss F (1997) Visual perception of stochastic resonance. Phys Rev Lett 78: 1186–1189

    Article  CAS  Google Scholar 

  • Snyder DL, Miller MI (1991) Random point processes in time and space, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Spruston N, Jaffe DB, Williams SH, Johnston D (1993) Voltage- and space-clamp errors associated with the measurement of electrically remote synaptic events. J Neurophysiol 70: 781–802

    CAS  PubMed  Google Scholar 

  • Stacey WC, Durand DM (2000) Stochastic resonance improves signal detection in hippocampal CA1 neurons. J Neurophysiol 83: 1394–1402

    CAS  PubMed  Google Scholar 

  • Stacey WC, Durand DM (2001) Synaptic noise improves detection of subthreshold signals in hippocampal CA1 neurons. J Neurophysiol 86: 1104–1112

    CAS  PubMed  Google Scholar 

  • Stacey WC, Durand DM (2002) Noise and coupling affect signal detection and bursting in a simulated physiological neural network. J Neurophysiol 88: 2598–2611

    Article  PubMed  Google Scholar 

  • Stein RB, Gossen ER, Jones KE (2005) Neuronal variability: noise or part of the signal?. Nat Rev 6: 389–397

    CAS  Google Scholar 

  • Traub RD (1982) Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience 7: 1233–1242

    Article  CAS  PubMed  Google Scholar 

  • Warman EN, Durand DM (1994) Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. J Neurophysiol 83: 2192–2208

    Google Scholar 

  • Zador A (1998) mpact of synaptic unreliability on the information transmitted by spiking neurons. J Neurophysiol 79: 1219–1229

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Mino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mino, H., Durand, D.M. Enhancement of information transmission of sub-threshold signals applied to distal positions of dendritic trees in hippocampal CA1 neuron models with stochastic resonance. Biol Cybern 103, 227–236 (2010). https://doi.org/10.1007/s00422-010-0395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0395-5

Keywords

Navigation