Skip to main content
Log in

A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The unique temporal and spectral properties of chopper neurons in the cochlear nucleus cannot be fully explained by current popular models. A new model of sustained chopper neurons was therefore suggested based on the assumption that chopper neurons receive input both from onset neurons and the auditory nerve (Bahmer and Langner in Biol Cybern 95:4, 2006). As a result of the interaction of broadband input from onset neurons and narrowband input from the auditory nerve, the chopper neurons in our model are characterized by a remarkable combination of sharp frequency tuning to pure tones and faithful periodicity coding. Our simulations show that the width of the spectral integration of the onset neuron is crucial for both the precision of periodicity coding and their resolution of single components of sinusoidally amplitude-modulated sine waves. One may hypothesize, therefore, that it would be an advantage if the hearing system were able to adapt the spectral integration of onset neurons to varying stimulus conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arle JC, Kim DO (1991) Neural modelling of intrinsic and spike-discharge properties of cochlear nucleus neurons. Biol Cybern 64: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Bahmer A, Langner G (2006a) Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm. Biol Cybern 95: 371–379

    Article  PubMed  Google Scholar 

  • Bahmer A, Langner G (2006b) Oscillating neurons in the cochlear nucleus: II. Simulation results. Biol Cybern 95: 381–392

    Article  PubMed  Google Scholar 

  • Banks MI, Sachs M (1991) Regularity analysis in a compartment model of chopper units in the anteroventral cochlear nucleus. J Neurophysiol 65: 606–629

    PubMed  CAS  Google Scholar 

  • Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29: 681–690

    Article  PubMed  CAS  Google Scholar 

  • Bleeck S (2000) Holistische Signalverarbeitung in einem Modell latenzverknuepfter Neuronen PhD Thesis, TU Darmstadt

  • Borst JG (1995) Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol 489: 825–840

    PubMed  CAS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93: 401–417

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Backoff PM, Finlayson PG, Palombi PS (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J Neurophysiol 72: 2124–2133

    PubMed  CAS  Google Scholar 

  • Cooper NP, Robertson D, Yates GK (1993) Cochlear nerve fiber response to amplitude-modulated stimuli: Variations with spontaneous rate and other response characteristics. J Neurophysiol 70: 370–386

    PubMed  CAS  Google Scholar 

  • Dreyer A, Delgutte B (2006) Phase locking of auditory-nerve fibers to the envelope of high-frequency sound: implications for sound localization. J Neurophysiol 96: 2327–2341

    Article  PubMed  Google Scholar 

  • Ehret G, Romand R (1997) The central auditory system. Oxford Universtity Press, Oxford

    Google Scholar 

  • Ferragamo M, Golding N, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79: 51–63

    PubMed  CAS  Google Scholar 

  • Ferragamo M, Oertel D (2002) Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization. J Neurophysiol 87: 2262–2270

    PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990a) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. a hierarchy of enhancement. Hear Res 44: 99–122

    Article  PubMed  CAS  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990b) Encoding of amplitude modulation in the gerbil cochlear nucleus: Ii. possible neural mechanisms. Hear Res 44: 123–142

    Article  PubMed  CAS  Google Scholar 

  • Golding NL, Ferragamo M, Oertel D (1999) Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus. J Neurosci 19: 2897–2905

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species–29 years later. J Acoust Soc Am 87: 2592–2605

    Article  PubMed  CAS  Google Scholar 

  • Hackett JT, Jackson H, Rubel EW (1982) Synaptic excitation of the second and third order auditory neurons in the avian brain stem. Neuroscience 7: 1455–1469

    Article  PubMed  CAS  Google Scholar 

  • Hemmert W, Holmberg M, Gerber M (2003) Coding of auditory information into nerv-action potentials. In Fortschritte der Akustik. Oldenburg. Deutsche Gesellschaft für Akustik e.V, pp 770–771

  • Hewitt MJ, Meddis R, Shakleton TM (1992) A computer model of a cochlear-nucleus stellate cell: Responses to amplitude-modulated and pure-tone stimuli. J Acoust Soc Am 91: 2096–2109

    Article  PubMed  CAS  Google Scholar 

  • Holmberg M, Hemmert W (2004) An auditory model for coding speech into nerve-action potentials. In: Proceedings of the joint congress CFA/DAGA 2004. Strasbourg, France, pp 773–774

  • Josephson EM, Morest DK (1998) A quantitative profile of the synapses on the stellate cell body and axon in the cochlear nucleus of the chinchilla. J Neurocyt 27: 841–864

    Article  CAS  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60: 115–142

    Article  PubMed  CAS  Google Scholar 

  • Langner G, Albert M, Briede T (2002) Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (chinchilla laniger). Hear Res 168: 110–130

    Article  PubMed  Google Scholar 

  • Langner G, Schreiner CE, Merzenich MM (1987) Covariation of latency and temporal resolution in the inferior colliculus of the cat. Hear Res 31: 197–202

    Article  PubMed  CAS  Google Scholar 

  • Molnar CE, Pfeiffer RR (1968) Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proc IEEE 56: 993–1004

    Article  Google Scholar 

  • Moore BCJ, Glasberg BR, Flanagan HJ (2006) Frequency discrimination of complex tones; assessing the role of component resolvability and temporal fine structure. J Acoust Soc Am 119(1): 480–490

    Article  PubMed  Google Scholar 

  • Moser T, Beutner D (2000) Kinectics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. PNAS 97: 11883–11888

    Article  Google Scholar 

  • Mountain DC, Cody AR (1999) Multiple modes of inner hair cell stimulation. Hear Res 132: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Oertel D (1983) Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. J Neurosci 3: 2043–2053

    PubMed  CAS  Google Scholar 

  • Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. PNAS 97: 11773–11779

    Article  PubMed  CAS  Google Scholar 

  • Ostapoff EM, Feng JJ, Morest DK (1994) A physiological and structural study of neuron types in the cochlear nucleus. ii. neuron types and their structural correlation with response properties. J Comp Neurol 346: 19–42

    Article  PubMed  CAS  Google Scholar 

  • Palmer A, Jiang D, Marshall DH (1996) Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth. J Neurophysiol 75: 780–794

    PubMed  CAS  Google Scholar 

  • Palmer AR, Wallace MN, Arnott RH, Shackleton TM (2003) Morphology of physiologically characterised ventral cochlear nucleus stellate cells. Exp Brain Res 153: 418–426

    Article  PubMed  CAS  Google Scholar 

  • Rall W (1967) Distinguishing theoretical synaptic potentials computed for different somadendritic distributions of synaptic inputs. J Neurophysiol 30: 1138–1168

    PubMed  CAS  Google Scholar 

  • Rothman JS, Manis PB (2003) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89: 3097–3113

    Article  PubMed  CAS  Google Scholar 

  • Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, Dosch HG, Bleeck S, Stippich C, Rupp A (2005) Structural and functional asymmetry of lateral heschl’s gyrus reflects pitch perception preference. Nat Neurosci 8(9): 1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Strube HW (1985) A computationally efficient basilar-membrane model. Acustica 58: 207–214

    Google Scholar 

  • Wang X, Sachs MB (1995) Transformation of temporal discharge patterns in a ventral cochlear nucleus stellate cell model: implications for physiological mechanisms. J Neurophysiol 73: 1600–1616

    PubMed  CAS  Google Scholar 

  • Wiegrebe L, Meddis R (2004) The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus. J Acoust Soc Am 115: 1207–1218

    Article  PubMed  Google Scholar 

  • Zwicker E (1986) A hardware cochlear nonlinear pre-processing model with active feedback. J Acoust Soc Am 80: 146–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Bahmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahmer, A., Langner, G. A simulation of chopper neurons in the cochlear nucleus with wideband input from onset neurons. Biol Cybern 100, 21–33 (2009). https://doi.org/10.1007/s00422-008-0276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0276-3

Keywords

Navigation