Skip to main content
Log in

Spike-train spectra and network response functions for non-linear integrate-and-fire neurons

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Reduced models have long been used as a tool for the analysis of the complex activity taking place in neurons and their coupled networks. Recent advances in experimental and theoretical techniques have further demonstrated the usefulness of this approach. Despite the often gross simplification of the underlying biophysical properties, reduced models can still present significant difficulties in their analysis, with the majority of exact and perturbative results available only for the leaky integrate-and-fire model. Here an elementary numerical scheme is demonstrated which can be used to calculate a number of biologically important properties of the general class of non-linear integrate-and-fire models. Exact results for the first-passage-time density and spike-train spectrum are derived, as well as the linear response properties and emergent states of recurrent networks. Given that the exponential integrate-fire model has recently been shown to agree closely with the experimentally measured response of pyramidal cells, the methodology presented here promises to provide a convenient tool to facilitate the analysis of cortical-network dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsiero M, Lüscher H-R, Lundstrom BN, Giugliano M (2007) The impact of input fluctuations on the frequency-current relationships of layer 5 pyramidal neurons in the rat medial prefrontal cortex. J Neurosci 27: 3274–3284

    Article  CAS  PubMed  Google Scholar 

  • Badel L, Lefort S, Brette R, Petersen CCH, Gerstner W, Richardson MJE (2008) Dynamic I–V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces. J Neurophysiol 99: 656–666

    Article  PubMed  Google Scholar 

  • Brunel N, Hakim V (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput 11: 1621–1671

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Wang X-J (2003) What determines the frequency of fast network oscillations with irregular neural discharges?. J Neurophysiol 90: 415–430

    Article  PubMed  Google Scholar 

  • Brunel N, Latham P (2003) Firing rate of noisy quadratic integrate- and-fire neurons. Neural Comput 15: 2281–2306

    Article  PubMed  Google Scholar 

  • Brunel N, Hakim V, Richardson MJE (2003) Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E 67:art-no 051916

    Google Scholar 

  • Burkitt AN (2006a) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95: 1–19

    Article  CAS  PubMed  Google Scholar 

  • Burkitt AN (2006b) A review of the integrate-and-fire neuron model: II Inhomogeneous synaptic input and network properties. Biol Cybern 95: 97–112

    Article  CAS  PubMed  Google Scholar 

  • Ermentrout GB, Kopell N (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J Appl Math 46: 233–253

    Article  Google Scholar 

  • Fourcaud-Trocmé N, Hansel D, van Vresswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J Neurosci 23: 11628–11640

    PubMed  Google Scholar 

  • Fourcaud-Trocmé N, Brunel N (2005) Dynamics of the instantaneous firing rate in response to changes in input statistics. J Comput Neurosci 18: 311–321

    Article  PubMed  Google Scholar 

  • Fuhrmann G, Markram H, Tsodyks M (2002) Spike frequency adaptation and neocortical rhythms. J Neurophys 88: 761–770

    Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press, Cambridge

    Google Scholar 

  • Gigante G, Mattia M, Del Giudice P (2007) Diverse population-bursting modes of adapting spiking neurons. Phys Rev Lett 98:art-no 148101

    Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    CAS  PubMed  Google Scholar 

  • Hohn N, Burkitt AN (2001) Shot noise in the leaky integrate-and-fire neuron. Phys Rev E 63:art-no 031902

    Google Scholar 

  • Johannesma PIM (1968) In: Caianiello ER (ed) Neural networks. Springer, New York, pp 116–44

  • Jolivet A, Rauch A, Lüscher H-R, Gerstner W (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21: 35–49

    Article  PubMed  Google Scholar 

  • Jolivet R, Kobayashi R, Rauch A, Naud R, Shinomoto S, Gerstner W (2008) A benchmark test for a quantitative assessment of simple neuron models. J Neurosci Meth 169: 417–424

    Article  Google Scholar 

  • Knight BW (1972a) Dynamics of encoding in a population of neurons. J Gen Physiol 59: 734–766

    Article  CAS  PubMed  Google Scholar 

  • Knight BW (1972b) The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. J Gen Physiol 59: 767–778

    Article  CAS  PubMed  Google Scholar 

  • Köndgen H, Geisler C, Fusi S, Wang X-J, Lüscher H-R, Giugliano M (2008) The dynamical response properties of neocortical neurons to temporally modulated noisy inputs in vitro. Cerebr Cortex. doi:10.1093/cercor/bhm235

  • Lansky P, Lanska V (1987) Diffusion approximation of the neuronal model with synaptic reversal potentials. Biol Cybern 56: 19–26

    Article  CAS  PubMed  Google Scholar 

  • Lindner B, Schimansky-Geier L (2001) Transmission of noise coded versus additive signals through a neuronal ensemble. Phys Rev Lett 86: 2934–2937

    Article  CAS  PubMed  Google Scholar 

  • Lindner B, Schimansky-Geier L, Longtin A (2002) Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Phys Rev E 66:art-no 031916

    Google Scholar 

  • Lindner B, Longtin A, Bulsara A (2003) Analytic expressions for rate and CV of a type I Neuron driven by white Gaussian noise. Neural Comput 15: 1761–1788

    Article  Google Scholar 

  • Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L (2004) Effects of noise in excitable systems. Phys Rep 392: 321–424

    Article  Google Scholar 

  • Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model. Neural Comput 16: 2533–2561

    Article  PubMed  Google Scholar 

  • Rauch A, La Camera G, Luscher H-R, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo like input currents. J Neurophys 90: 1598–1612

    Article  Google Scholar 

  • Ricciardi LM (1977) Diffusion processes and related topics in biology. Springer, Berlin

    Google Scholar 

  • Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89: 2538–2554

    Article  PubMed  Google Scholar 

  • Richardson MJE (2004) Effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Phys Rev E 69:art-no 051918

    Google Scholar 

  • Richardson MJE, Gerstner W (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Comput 17: 923–947

    Article  PubMed  Google Scholar 

  • Richardson MJE, Gerstner W (2006) Statistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise. Chaos 16:art-no 026106

    Google Scholar 

  • Richardson MJE (2007) Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Phys Rev E 76:article-no 021919

    Google Scholar 

  • Risken H (1996) The Fokker–Planck equation. Springer, Berlin

    Google Scholar 

  • Silberberg G, Bethge M, Markram H, Pawelzik K, Tsodyks M (2004) Dynamics of population rate codes in ensembles of neocortical neurons. J Neurophysiol 91: 704–709

    Article  CAS  PubMed  Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5: 173–194

    Article  CAS  PubMed  Google Scholar 

  • DeWeese MR, Zador AM (2006) Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J Neurosci 26: 12206–12218

    Article  CAS  PubMed  Google Scholar 

  • Wolff L, Lindner B (2008) Method to calculate the moments of the membrane voltage in a model neuron driven by multiplicative filtered shot noise. Phys Rev E 77:article-no 041913

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus J. E. Richardson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, M.J.E. Spike-train spectra and network response functions for non-linear integrate-and-fire neurons. Biol Cybern 99, 381–392 (2008). https://doi.org/10.1007/s00422-008-0244-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-008-0244-y

Keywords

Navigation