Skip to main content
Log in

Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) was used to assess the contributions of movement preparation and execution of a visuomotor task in a cerebral motor network. The functional connectivity of the voxel time series between brain regions in the frequency space was investigated by performing spectral analysis of fMRI time series. The regional interactivities between the two portions of the supplementary motor area (pre-SMA and SMA-proper) and the primary motor cortex (M1), defined as a seed region, were evaluated. The spectral parameter of coherence was used to describe a correlation structure in the frequency domain between two voxel-based time series and to infer the strength of the functional interaction within our presumed motor network of connections. The results showed meaningful differences of the functional interactions between the two portions of the SMA and the M1 area depending on the task conditions. This approach demonstrated the existence of a functional dissociation between the pre-SMA and SMA-proper subregions. We therefore conclude that spectral analysis is useful for identifying functional interactions of brain regions and might provide a powerful tool to quantify changes in connectivity profiles associated with various components of an experimental task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre GK, Zarahn E and D’Esposito M (1998). The variability of human, BOLD hemodynamic responses. NeuroImage 8: 360–369

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE and Crutcher MD (1990a). Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. J Neurophysiol 64: 164–178

    PubMed  CAS  Google Scholar 

  • Alexander GE and Crutcher MD (1990b). Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64: 133–150

    PubMed  CAS  Google Scholar 

  • Amjad AM, Halliday DM, Rosenberg JR and Conway BA (1997). An extended difference of coherence test for comparing and combining several independent coherence estimates: theory and application to the study of motor units and physiological tremor. J Neurosci Meth 73: 69–79

    Article  CAS  Google Scholar 

  • Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M and Gerloff C (1999). Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122: 855–870

    Article  PubMed  Google Scholar 

  • Andrew C and Pfurtscheller G (1996). Event-related coherence as a tool for studying dynamic interaction of brain regions. Electroencephalogr Clin Neurophysiol 98: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Bartels A and Zeki S (2005). Brain dynamics during natural viewing conditions-a new guide for mapping connectivity in vivo. NeuroImage 24: 339–349

    Article  PubMed  Google Scholar 

  • Besthorn C, Forstl H, Geiger-Kabisch C, Sattel H, Gasser T and Schreiter-Gasser U (1994). EEG coherence in Alzheimer disease. Electroencephalogr Clin Neurophysiol 90: 242–245

    Article  PubMed  CAS  Google Scholar 

  • Birn RM, Diamond JB, Smith MA and Bandettini PA (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31: 1536–1548

    Article  PubMed  Google Scholar 

  • Biswal B, DeYoe AE and Hyde JS (1996). Reduction of physiological fluctuations in fMRI using digital filters. Magn Reson Med 35: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Brillinger DR (1981). Time series—data analysis and theory, 2nd edn. Holden Day, San Francisco

    Google Scholar 

  • Brockwell PJ and Davis RA (1991). Time series: theory and methods, 2nd edn. Springer, Berlin

    Google Scholar 

  • Buchel C and Friston KJ (1998). Dynamic changes in effective connectivity characterized by variable parameter regression and Kalman filtering. Hum Brain Mapp 6: 403–408

    Article  PubMed  CAS  Google Scholar 

  • Bullmore ET, Rabe-Hesketh S, Morris RG, Williams SC, Gregory L, Gray JA and Brammer MJ (1996). Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4: 16–33

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Wong EC and Frank LR (1998). Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39: 855–864

    Article  PubMed  CAS  Google Scholar 

  • Cannestra AF, Pouratian N, Shomer MH and Toga AW (1998). Refractory periods observed by intrinsic signal and fluorescent dye imaging. J Neurophysiol 80: 1522–1532

    PubMed  CAS  Google Scholar 

  • Carey JR, Greer KR, Grunewald TK, Steele JL, Wiemiller JW, Bhatt E, Nagpal A, Lungu O and Auerbach EJ (2006). Primary motor area activation during precision-demanding versus simple finger movement. Neurorehabil Neural Repair 20: 361–370

    Article  PubMed  Google Scholar 

  • Carpenter AF, Georgopoulos AP and Pellizzer G (1999). Motor cortical encoding of serial order in a context-recall task. Science 283: 1752–1757

    Article  PubMed  CAS  Google Scholar 

  • Classen J, Gerloff C, Honda M and Hallett M (1998). Integrative visuomotor behavior is associated with interregionally coherent oscillations in the human brain. J Neurophysiol 79: 1567–1573

    PubMed  CAS  Google Scholar 

  • Clower WT and lexander GE (1998). Movement sequence-related activity reflecting numerical order of components in supplementary and presupplementary motor areas. J Neurophysiol 80: 1562–1566

    PubMed  CAS  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, Quigley MA and Meyerand ME (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. Am J Neuroradiol 21: 1636–1644

    PubMed  CAS  Google Scholar 

  • Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA and Meyerand ME (2001). Frequencies contributing to functional connectivity in the cerebral cortex in resting-state data. Am J Neuroradiol 22: 1326–1333

    PubMed  CAS  Google Scholar 

  • Cui SZ, Li EZ, Zang YF, Weng XC, Ivry R and Wang JJ (2000). Both sides of human cerebellum involved in preparation and execution of sequential movements. Neuroreport 11: 3849–3853

    Article  PubMed  CAS  Google Scholar 

  • Cunnington R, Windischberger C, Deecke L and Moser E (2002). The preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI. NeuroImage 15: 373–385

    Article  PubMed  CAS  Google Scholar 

  • Dechent P, Merboldt KD and Frahm J (2004). Is the human primary motor cortex involved in motor imagery. Cogn Brain Res 19: 138–144

    Article  Google Scholar 

  • deMarco G, de Bonis M, Vrignaud P, Henry-Feugeas MC and Peretti I (2006). Changes in effective connectivity during incidental and intentional perception of fearful faces. NeuroImage 30: 1030–1037

    Article  CAS  Google Scholar 

  • D’Esposito M, Deouell LY and Gazzaley A (2003). Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4: 863–872

    Article  PubMed  CAS  Google Scholar 

  • Dum RP and Strick PL (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11: 667–689

    PubMed  CAS  Google Scholar 

  • Duyn JH, Moonen CT, de Boer RW, Luyten PR and van Ypren GH (1994). Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5 T. NMR Biomed 7: 83–88

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ and Mazziotta JC (1997). Human brain function. Academic, London

    Google Scholar 

  • Frahm J, Merboldt KD, Hanicke W, Kleinschmidt A and Boecker H (1994). Brain or vein—oxygenation or flow? on signal physiology in functional MRI of human brain activation. NMR Biomed 7: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS and Spencer DD (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11: 3656–3666

    PubMed  CAS  Google Scholar 

  • Friston KJ, Frith CD and Frackowiak RS (1993a). Time-dependent changes in effective connectivity measured with PET. Hum Brain Mapp 1: 69–79

    Article  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF and Frackowiak RS (1993b). Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 13: 5–14

    PubMed  CAS  Google Scholar 

  • Friston KJ, Harrison L and Penny W (2003). Dynamic causal modelling. NeuroImage 19: 1273–1302

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos AP (2000). Neural aspects of cognitive motor control. J Neurosci 10: 238–241

    CAS  Google Scholar 

  • Georgopoulos AP, Lurito JT, Petrides M, Schwartz AB and Massey JT (1989). Mental rotation of the neuronal population vector. Science 243: 234–236

    Article  PubMed  CAS  Google Scholar 

  • Gerardin E, Pochon JB, Poline JB, Tremblay L, de Moortele PFV, Levy R, Dubois B, Bihan DL and Lehericy S (2004). Distinct striatal regions support movement selection, preparation and execution. Neuroreport 15: 2327–2331

    Article  PubMed  Google Scholar 

  • Gerstein GL and Perkel DH (1969). Simultaneously recorded trains of action potentials: analysis and functional interpretation. Science 164: 828–830

    Article  PubMed  CAS  Google Scholar 

  • Golay X, Kollias S, Stoll G, Meier D, Valavanis A and Boesiger P (1998). A new correlation-based fuzzy logic clustering algorithm for fMRI. Magn Reson Med 40: 249–260

    Article  PubMed  CAS  Google Scholar 

  • Goldman RI, Stern JM, Engel JJ and Cohen MS (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13: 2487–2492

    Article  PubMed  Google Scholar 

  • Gross J, Pollok B, Dirks M, Timmermann L, Butz M and Schnitzler A (2005). Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. NeuroImage 26: 91–98

    Article  PubMed  CAS  Google Scholar 

  • Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA and Farmer SF (1995). A framework for the analysis of mixed time series/point process data—theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Prog Biophys Mol Biol 64: 237–278

    Article  PubMed  CAS  Google Scholar 

  • Handwerker DA, Ollinger JM, Curtis CE, D’Esposito M (2002) Effects of regional and subject variability of the hemodynamic response function on modeling fMRI signals. Society for Neuroscience, New Orleans

  • Handwerker DA, Ollinger JM and D’Esposito M (2004). Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage 24: 1639–1651

    Article  Google Scholar 

  • Harrison L, Friston KJ (2003) Effective connectivity. In: Frackowiak RSJ, Friston KJ, Frith C, Dolan R, Price CJ, Zeki S, Ashburner J, Penny WDHuman brain function. 2nd edn. Academic,

  • Harrison RV, Harel N, Panesar J and Mount RJ (2002). Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb Cortex 12: 225–233

    Article  PubMed  Google Scholar 

  • Haughton V and Biswal B (1998). Clinical application of basal regional cerebral blood flow fluctuation measurements by fMRI. Adv Exp Med Biol 454: 583–590

    PubMed  CAS  Google Scholar 

  • Hebb D (1949). The organization of behavior: a neurophysiological theory. Wiley, New York

    Google Scholar 

  • Henson RN, Price CJ, Rugg MD, Turner R and Friston KJ (2002). Detecting latency differences in event-related BOLD responses: application to words versus nonwords and initial versus repeated face presentations. NeuroImage 15: 83–97

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S and Doya K (1999). Parallel neural networks for learning sequential procedures. Trends Neurosci 22: 464–471

    Article  PubMed  CAS  Google Scholar 

  • Himberg J, Hyvarinen A and Esposito F (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 22: 1214–1222

    Article  PubMed  Google Scholar 

  • Horwitz B (2003). The elusive concept of brain connectivity. NeuroImage 19: 466–470

    Article  PubMed  Google Scholar 

  • Huettel SA and McCarthy G (2000). Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. NeuroImage 11: 547–553

    Article  PubMed  CAS  Google Scholar 

  • Huettel SA and McCarthy G (2001). Regional differences in the refractory period of the hemodynamic response: an event-related fMRI study. NeuroImage 14: 967–976

    Article  PubMed  CAS  Google Scholar 

  • Indovina I and Sanes JN (2001). On somatotopic representation centers for finger movements in human primary motor cortex and supplementary motor area. NeuroImage 13: 1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Kansaku K, Kitazawa S and Kawano K (1998). Sequential hemodynamic activation of motor areas and the draining veins during finger movements revealed by cross-correlation between signals from fMRI. Neuroreport 9: 1969–1974

    Article  PubMed  CAS  Google Scholar 

  • Kansaku K, Muraki S, Umeyama S, Nishimori Y, Kochiyama T, Yamane S and Kitazawa S (2005). Cortical activity in multiple motor areas during sequential finger movements: an application of independent component analysis. NeuroImage 28: 669–681

    Article  PubMed  Google Scholar 

  • Kawashima R, Okuda J, Umetsu A, Sugiura M, Inoue K, Suzuki K, Tabuchi M, Tsukiura T, Narayan SL, Nagasaka T, Yanagawa I, Fujii T, Takahashi S, Fukuda H and Yamadori A (2000). Human cerebellum plays an important role in memory-timed finger movement: an fMRI study. J Neurophysiol 83: 1079–1087

    PubMed  CAS  Google Scholar 

  • Kennerley SW, Sakai K and Rushworth MF (2004). Organization of action sequences and the role of the pre-SMA. J Neurophysiol 91: 978–993

    Article  PubMed  Google Scholar 

  • Kim SG, Richter W and Ugurbil K (1997). Limitations of temporal resolution in functional MRI. Magn Reson Med 37: 631–636

    Article  PubMed  CAS  Google Scholar 

  • Koopmans LH (1974). The spectral analysis of time series. Academic, New York

    Google Scholar 

  • Krainik A, Lehericy S, Duffau H, Vlaicu M, Poupon F, Capelle L, Cornu P, Clemenceau S, Sahel M, Valery C, Boch A, Mangin J, Bihan D and Marsault C (2001). Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57: 871–878

    PubMed  CAS  Google Scholar 

  • Krainik A, Lehericy S, Duffau H, Capelle L, Chainay H, Cornu P, Cohen L, Boch AL, Mangin JF, Bihan DL and Marsault C (2003). Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60: 587–594

    PubMed  CAS  Google Scholar 

  • Kyoung-Min L, Kee-Hyun C and Jae-Kyu R (1999). Subregions within the supplementary motor area activated at different stages of movement preparation and execution. NeuroImage 9: 117–123

    Article  Google Scholar 

  • Lai S, Hopkins A, Haacke EM, Li D, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P and Friedland R (1993). Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: preliminary results. Magn Reson Med 30: 387–392

    Article  PubMed  CAS  Google Scholar 

  • Laplane D, Talairach J, Meininger V, Bancaud J and Orgogozo JM (1977). Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci 34: 301–314

    Article  PubMed  CAS  Google Scholar 

  • Lee AT, Glover GH and Meyer CH (1995). Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging. Magn Reson Med 33: 745–754

    Article  PubMed  CAS  Google Scholar 

  • Lee KM, Chang KH and Roh JK (1999). Subregions within the supplementary motor area activated at different stages of movement preparation and execution. NeuroImage 9: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Lee L, Harrison LM and Mechelli A (2003). A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage 19: 457–465

    Article  PubMed  Google Scholar 

  • Leopold DA, Murayama Y and Logothetis NK (2003). Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13: 422–433

    Article  PubMed  Google Scholar 

  • LeRoc’h K (1994). EEG coherence in Alzheimer disease, by Besthorn et al. Electroencephalogr Clin Neurophysiol 91: 232–223

    Article  CAS  Google Scholar 

  • Locatelli T, Cursi M, Liberati D, Franceschi M and Comi G (1998). EEG coherence in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 106: 229–237

    Article  PubMed  CAS  Google Scholar 

  • Logothetis N, Pauls J, Augath M, Trinath T and Oeltermann A (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150–157

    Article  PubMed  CAS  Google Scholar 

  • Lopez L and Sanjuan MA (2002). Relation between structure and size in social networks. Phys Rev E Stat Nonlin Soft Matt Phys 65: 036,107

    Google Scholar 

  • Lu MT, Preston JB and Strick PL (1994). Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341: 375–392

    Article  PubMed  CAS  Google Scholar 

  • Lu X and Ashe J (2005). Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 45: 967–973

    Article  PubMed  CAS  Google Scholar 

  • Luppino G, Matelli M, Camarda R and Rizzolatti G (1993). Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338: 114–140

    Article  PubMed  CAS  Google Scholar 

  • Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN and Lemon RN (2002). Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex 12: 281–296

    Article  PubMed  CAS  Google Scholar 

  • Marchini LJ and Ripley BD (2000). A new statistical approach to detecting significant activation in funtional MRI. NeuroImage 12: 366–380

    Article  PubMed  CAS  Google Scholar 

  • Marrelec G, Krainik A, Duffau H, Pelegrini-Issac M, Lehericy S, Doyon J and Benali H (2006). Partial correlation for functional brain interactivity investigation in functional MRI. NeuroImage 32: 228–237

    Article  PubMed  Google Scholar 

  • Matelli M, Luppino G and Rizzolatti G (1991). Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311: 445–462

    Article  PubMed  CAS  Google Scholar 

  • Matelli M, Rizzolatti G, Bettinardi V, Gilardi MC, Perani D, Rizzo G and Fazio F (1993). Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: a PET study. Neuroreport 4: 1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N and Lauritzen M (1998). Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512(Pt 2): 555–566

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaka Y, Aizawa H and Tanji J (1992). A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68: 653–662

    PubMed  CAS  Google Scholar 

  • McIntosh AR and Gonzalez-Lima F (1994). Structural equation modeling and its application to network analysis in functiona brain imaging. Hum Brain Mapp 2: 2–22

    Article  Google Scholar 

  • McKeown MJ and Sejnowski TJ (1998). Independent component analysis of fMRI data: examining the assumptions. Hum Brain Mapp 6: 368–372

    Article  PubMed  CAS  Google Scholar 

  • McKeown MJ, Makeig S, Brown GG, Jung TP, Kindermann SS, Bell AJ and Sejnowski TJ (1998). Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp 6: 160–188

    Article  PubMed  CAS  Google Scholar 

  • Miezin FM, Maccotta L, Ollinger JM, Petersen SE and Buckner RL (2000). Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing. NeuroImage 11: 735–759

    Article  PubMed  CAS  Google Scholar 

  • Muller K, Lohmann G, Bosch V and von Cramon DY (2001). On multivariate spectral analysis of fMRI time series. NeuroImage 14: 347–356

    Article  PubMed  CAS  Google Scholar 

  • Nevado A, Young M and Panzeri S (2004). Functional imaging and neural information coding. NeuroImage 21: 1083–1095

    Article  PubMed  Google Scholar 

  • Newton J, Sunderland A, Butterworth SE, Peters AM, Peck KK and Gowland PA (2002). A pilot study of event-related functional magnetic resonance imaging of monitored wrist movements in patients with partial recovery. Stroke 33: 2881–2887

    Article  PubMed  CAS  Google Scholar 

  • Ngai AC, Jolley MA, D’Ambrosio R, Meno J and Winn H (1999). Frequency-dependent changes in cerebral blood flow and evoked potentials during somatosensory stimulation in the rat. Brain Res 837: 221–228

    Article  PubMed  CAS  Google Scholar 

  • Obata T, Liu TT, Miller KL, Luh WM, Wong EC, Frank LR and Buxton RB (2004). Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. NeuroImage 21: 144–153

    Article  PubMed  Google Scholar 

  • Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellerman JM and Ugurbil K (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64: 803–812

    Article  PubMed  CAS  Google Scholar 

  • Parkes LM, Bastiaansen MC and Norris DG (2006). Combining EEG and fMRI to investigate the post-movement beta rebound. NeuroImage 29: 685–696

    Article  PubMed  Google Scholar 

  • Penny WD, Stephan KE, Mechelli A and Friston KJ (2004). Modelling functional integration: a comparison of structural equation and dynamic causal models. NeuroImage 23(suppl 1): S264–S274

    Article  PubMed  Google Scholar 

  • Picard N and Strick P (1996). Motor area of the medial wall: a review of their location and functional activation. Cereb Cortex 6: 342–353

    Article  PubMed  CAS  Google Scholar 

  • Porro CA, Francescato MP, Cettolo V, Diamond ME, Baraldi P, Zuiani C, Bazzocchi M and di Prampero PE (1996). Primary motor and sensory cortex activation during motor performance and motor imagery: a functional magnetic resonance imaging study. J Neurosci 16: 7688–7698

    PubMed  CAS  Google Scholar 

  • Priestley MB (1981). Spectral analysis and time series, vol 2. Academic, London

    Google Scholar 

  • Priestley MB (1981). Spectral analysis and time series, vol 1. Academic, London

    Google Scholar 

  • Rappelsberger P and Petsche H (1988). Probability mapping: power and coherence analyses of cognitive processes. Brain Topogr 1: 46–54

    Article  PubMed  CAS  Google Scholar 

  • Richter W, Andersan PM, Georgopoulos A and Kim S (1997). Sequential activity in human motor areas during a delay cued finger movement task studied by time-resolved fMRI. Neuroreport 8: 1257–1261

    PubMed  CAS  Google Scholar 

  • Rizzolatti G, Luppino G and Matelli M (1996). The classic supplementary motor area is formed by two independent areas. Adv Neurol 70: 45–56

    PubMed  CAS  Google Scholar 

  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR and M HD (1989). The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53: 1–31

    Article  PubMed  CAS  Google Scholar 

  • Rykhlevskaia E, Fabiani M and Gratton G (2006). Lagged covariance structure models for studying functional connectivity in the brain. NeuroImage 30: 1203–1218

    Article  PubMed  Google Scholar 

  • Saad ZS, Ropella KM, Cox R and DeYoe E (2001). Analysis and use of fMRI response delays. Hum Brain Mapp 13: 74–93

    Article  PubMed  CAS  Google Scholar 

  • Schack B, Grieszbach G, Nowak H and Krause W (1999). The sensitivity of instantaneous coherence for considering elementary comparison processing. Part II: similarities and differences between EEG and MEG coherences. Int J Psychophysiol 31: 241–259

    Article  PubMed  CAS  Google Scholar 

  • Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N and Toga AW (2004). Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron 42: 347–355

    Article  PubMed  CAS  Google Scholar 

  • Shibasaki H and Ikeda A (1996). Generation of movement-related potentials in the supplementary sensorimotor area. Adv Neurol 70: 117–125

    PubMed  CAS  Google Scholar 

  • Shibasaki H, Sadato N, Lyshkow H, Yonekura Y, Honda M, Nagamine T, Suwazono S, Magata Y, Ikeda A and Miyazaki M (1993). Both primary motor cortex and supplementary motor area play an important role in complex finger movement. Brain 116(Pt 6): 1387–1398

    Article  PubMed  Google Scholar 

  • Shima K and Tanji J (1998). Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J Neurophysiol 80: 3247–3260

    PubMed  CAS  Google Scholar 

  • Sporns O, Chialvo DR, Kaiser M and Hilgetag CC (2004). Organization, development and function of complex brain networks. Trends Cogn Sci 8: 418–425

    Article  PubMed  Google Scholar 

  • Stam CJ, Jones BF, Manshanden I, van Cappellen AM, van Walsum, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW and Scheltens P (2006). Magnetoencephalographic evaluation of resting-state functional connectivity in Alzheimer’s disease. NeuroImage 32: 1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Sun FT, Miller LM and D’Esposito M (2005). Measuring temporal dynamics of functional networks using phase spectrum of fMRI data. NeuroImage 28: 227–237

    Article  PubMed  Google Scholar 

  • Tanji J (1996). New concepts of the supplementary motor area. Curr Opin Neurobiol 6: 782–787

    Article  PubMed  CAS  Google Scholar 

  • Tanji J and Shima K (1994). Role for supplementary motor area cells in planning several movements ahead. Nature 371: 413–416

    Article  PubMed  CAS  Google Scholar 

  • Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A, Nishizawa S, Konishi J and Shibasaki H (1999). Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19: 3527–3534

    PubMed  CAS  Google Scholar 

  • Toni I, Schluter ND, Josephs O, Friston K and Passingham RE (1999). Signal-, set- and movement-related activity in the human brain: an event-related fMRI study. Cereb Cortex 9: 35–49

    Article  PubMed  CAS  Google Scholar 

  • Tononi G, Edelman GM and Sporns O (1998). Complexity and coherence:integrating information in the brain. Trends Cogn Sci 2: 474–484

    Article  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E and Martinerie J (2001). The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2: 229–239

    Article  PubMed  CAS  Google Scholar 

  • Wang SY, Liu X, Yianni J, Miall RC, Aziz TZ and Stein JF (2004). Optimising coherence estimation to assess the functional correlation of tremor-related activity between the subthalamic nucleus and the forearm muscles. J Neurosci Meth 136: 197–205

    Article  Google Scholar 

  • Welch P (1967). The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms. IEEE Trans Audio Electroacous AU-15: 70–73

    Article  Google Scholar 

  • Wiener N (1930). Generalized harmonic analysis. Act Math 55: 117–258

    Article  Google Scholar 

  • Zang Y, Jia F, Weng X, Li E, Cui S, Wang Y, Hazeltine E and Ivry R (2003). Functional organization of the primary motor cortex characterized by event-related fMRI during movement preparation and execution. Neurosci Lett 337: 69–72

    Article  PubMed  CAS  Google Scholar 

  • Zarahn E (2000). Testing for neural responses during temporal components of trials with BOLD fMRI. NeuroImage 11: 783–796

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fall, S., de Marco, G. Assessment of brain interactivity in the motor cortex from the concept of functional connectivity and spectral analysis of fMRI data. Biol Cybern 98, 101–114 (2008). https://doi.org/10.1007/s00422-007-0198-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0198-5

Keywords

Navigation