Skip to main content
Log in

Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We study the orientation and speed tuning properties of spatiotemporal three-dimensional (3D) Gabor and motion energy filters as models of time-dependent receptive fields of simple and complex cells in the primary visual cortex (V1). We augment the motion energy operator with surround suppression to model the inhibitory effect of stimuli outside the classical receptive field. We show that spatiotemporal integration and surround suppression lead to substantial noise reduction. We propose an effective and straightforward motion detection computation that uses the population code of a set of motion energy filters tuned to different velocities. We also show that surround inhibition leads to suppression of texture and thus improves the visibility of object contours and facilitates figure/ground segregation and the detection and recognition of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson EH and Bergen JR (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2(2): 284–299

    PubMed  CAS  Google Scholar 

  • Adelson EH and Movshon JA (1982). Phenomenal coherence of moving visual patterns. Nature 300(5892): 523–525

    Article  PubMed  CAS  Google Scholar 

  • Albright TD (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. J Neurophysiol 52(6): 1106–1130

    PubMed  CAS  Google Scholar 

  • Allman JM, Miezin FM and McGuinness E (1985). Direction and velocity specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14(2): 105–126

    Article  PubMed  CAS  Google Scholar 

  • Andrews BW and Pollen DA (1979). Relationship between spatial frequency selectivity and receptive field profile of simple cells. J Physiol Lond 287: 163–176

    PubMed  CAS  Google Scholar 

  • Bayerl P and Neumann H (2004). Disambiguating visual motion through contextual feedback modulation. Neural Comput 16: 2041–2066

    Article  PubMed  Google Scholar 

  • Bayerl P and Neumann H (2007). A fast biologically inspired algorithm for recurrent motion estimation. IEEE Trans Pattern Anal Mach Intell 29(2): 246–260

    Article  PubMed  Google Scholar 

  • Berezovskii VK and Born RT (2000). Specificity of projections from wide field and local motion-processing regions with the middle temporal visual area of the owl monkey. J Neurosci 20(3): 1157–1169

    PubMed  CAS  Google Scholar 

  • Betts LR, Taylor CP, Sekuler AB and Bennett PJ (2005). Aging reduces center-surround antagonism in visual motion processing. Neuron 45: 361–366

    Article  PubMed  CAS  Google Scholar 

  • Blakemore C and Tobin EA (1972). Lateral inhibition between orientation detectors in the cat’s visual cortex. Exp Brain Res 15: 439–440

    Article  PubMed  CAS  Google Scholar 

  • Born RT (2000). Center–surround interactions in middle temporal visual area of the owl monkey. J Neurophysiol 84(5): 2658–2669

    PubMed  CAS  Google Scholar 

  • Born RT and Bradley DC (2005). Structure and function of visual area MT. Annu Rev Neurosci 28: 157–189

    Article  PubMed  CAS  Google Scholar 

  • Born RT and Tootell RBH (1992). Segregation of global and local motion processing in primate middle temporal visual area. Nature 357(6378): 497–499

    Article  PubMed  CAS  Google Scholar 

  • Born RT, Groh JM, Zhao R and Lukasewycz SJ (2000). Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26: 725–734

    Article  PubMed  CAS  Google Scholar 

  • Bosking WH, Zhang Y, Schofield B and Fitzpatrick D (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew stirate cortex. J Neurosci 17(6): 2112–2127

    PubMed  CAS  Google Scholar 

  • Bradley DC and Anderson RA (1998). Center-surround antagonism based on disparity in primate area MT. J Neurosci 18(18): 7552–7565

    PubMed  CAS  Google Scholar 

  • Buracas GT and Albright TD (1996). Contribution of area MT to perception of three dimensional shape: a computational study. Vis Res 36(6): 869–887

    Article  PubMed  CAS  Google Scholar 

  • Canny JF (1986). A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6): 679–698

    Article  Google Scholar 

  • Daugman JG (1985). Uncertainty relations for resolution in space, spatial frequency and orientation optimized by two dimensional visual cortical filters. J Opt Soc Am A 2: 1160–1169

    PubMed  CAS  Google Scholar 

  • DeAngelis GC and Uka T (2003). Coding of horizontal disparity and velocity by MT neurons in the alert macaque. J Neurophysiol 89(2): 1094–1111

    Article  PubMed  Google Scholar 

  • DeAngelis GC, Ohzawa I and Freeman RD (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. I. General characteristics and postnatal development. J Neurophysiol 69: 1091–1117

    PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I and Freeman RD (1993). Spatiotemporal organization of simple-cell receptive fields in the cat’s striate cortex. II. Linearity of temporal and spatial summation. J Neurophysiol 69: 1118–1135

    PubMed  CAS  Google Scholar 

  • DeAngelis GC, Ohzawa I and Freeman RD (1995). Receptive-fielddynamics in the central visual pathways. Trends Neurosci 18: 451–458

    Article  PubMed  CAS  Google Scholar 

  • du Buf JMH (2007). Improved grating and bar cell models in cortical area V1 and texture coding. Image Vis Comput 25(6): 873–882

    Article  Google Scholar 

  • Eifuku S and Wurtz RH (1998). Response to motion in extrastriate cortex MSTl: center–surround interactions. J Neurophysiol 80(1): 282–296

    PubMed  CAS  Google Scholar 

  • Gautama T and van Hulle MM (2001). Function of center–surround antagonism for motion in visual area MT/V5: a modeling study. Vis Res 41(28): 3917–3930

    Article  PubMed  CAS  Google Scholar 

  • Glezer VD, Tscherbach TA, Gauselman VE and Bondarko VM (1980). Linear and non-linear properties of simple and complex receptive fields in area 17 of the cat visual cortex. Biol Cybern 37: 195–208

    Article  PubMed  CAS  Google Scholar 

  • Grigorescu C, Petkov N and Westenberg MA (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Trans Image Process 12(7): 729–739

    Article  PubMed  CAS  Google Scholar 

  • Grigorescu C, Petkov N and Westenberg MA (2004). Contour and boundary detection improved by surround suppression of texture edges. Image Vis Comput 22(8): 609–622

    Article  Google Scholar 

  • Grigorescu SE, Petkov N and Kruizinga P (2002). Comparison of texture features based on Gabor filters. IEEE Trans Image Process 11(10): 1160–1167

    Article  PubMed  CAS  Google Scholar 

  • Heeger DJ (1987). Model for the extraction of image flow. J Opt Soc Am A 4(8): 1455–1471

    PubMed  CAS  Google Scholar 

  • Heeger DJ (1993). Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J Neurophysiol 70(5): 1885–1898

    PubMed  CAS  Google Scholar 

  • Hubel DH and Wiesel TN (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol Lond 160: 106–154

    PubMed  CAS  Google Scholar 

  • Hubel DH and Wiesel TN (1968). Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1): 215–243

    PubMed  CAS  Google Scholar 

  • Jones HE, Grieve KL, Wang W and Silito AM (2001). Surround suppression in primate V1. J Neurophysiol 86: 2011–2028

    PubMed  CAS  Google Scholar 

  • Jones JP and Palmer LA (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat stirate cortex. J Neurophysiol 58: 1233–1258

    PubMed  CAS  Google Scholar 

  • Knierim JJ and van Essen DC (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol 67: 961–980

    PubMed  CAS  Google Scholar 

  • Koenderink JJ (1984). The structure of images. Biol Cybern 50: 363–370

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ and van Doorn AJ (1992). Second order optic flow. J Opt Soc Am A 9: 530–538

    Article  Google Scholar 

  • Kruizinga P and Petkov N (1999). Nonlinear operator for oriented texture. IEEE Trans Image Process 8(10): 1395–1407

    Article  PubMed  CAS  Google Scholar 

  • Kulikowski JJ and Bishop PO (1981). Fourier analysis and spatial representation in the visual cortex. Experientia 37: 160–163

    Article  PubMed  CAS  Google Scholar 

  • Mahalanobis PC (1936). On the generalised distance in statistics. Proc Natl Inst Sci India 12: 49–55

    Google Scholar 

  • Marcelja S (1980). Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70(11): 1297–1300

    PubMed  CAS  Google Scholar 

  • Martin DR, Fowlkes CC and Malik J (2004). Learning to detect natural image boundaries using local brightness, color and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5): 530–549

    Article  PubMed  Google Scholar 

  • Mingolla E, Todd JT and Norman JF (1992). The perception of globally coherent motion. Vis Res 32(6): 1015–1031

    Article  PubMed  CAS  Google Scholar 

  • Morrone MC and Burr DC (1988). Feature detection in human vision: a phase-dependent energy model. Proc R Soc Lond B 235: 221–245

    PubMed  CAS  Google Scholar 

  • Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of moving visual patterns. Experimental brain research supplemntum II: pattern recognition mechanisms pp 117–151

  • Movshon JA, Thompson ID and Tolhurst DJ (1978). Receptive field organization of complex cells in the cat’s striate cortex. J Physiol 283: 79–99

    PubMed  CAS  Google Scholar 

  • Movshon JA, Thompson ID and Tolhurst DJ (1978). Spatial summation in the receptive fields of simple cells in the cat’s striate cortex. J Physiol 283: 53–77

    PubMed  CAS  Google Scholar 

  • Nakayama K and Loomis JM (1974). Optical velocity patterns, velocity-sensitive neurons and space perception: a hypothesis. Perception 3: 63–80

    Article  PubMed  CAS  Google Scholar 

  • Nothdurft HC, Gallant JL and van Essen DC (1999). Response modulation by texture surround in primate area V1: correlates of “popout” under anasthesia. Vis Neurosci 16: 15–34

    Article  PubMed  CAS  Google Scholar 

  • Pack CC and Born RT (2001). Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409(6823): 1040–1042

    Article  PubMed  CAS  Google Scholar 

  • Pack CC, Hunter JN and Born RT (2005). Contrast dependence of suppresive influences in cortical area MT of alert macaque. J Neurophysiol 93(3): 1809–1815

    Article  PubMed  Google Scholar 

  • Pack CC, Livingstone MS, Duffy KR and Born RT (2003). End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron 39(4): 671–680

    Article  PubMed  CAS  Google Scholar 

  • Paffen CLE, van der Smagt MJ, te Pas SF and Verstraten FAJ (2005). Center-surround inhibition and facilitation as a function of size and contrast at multiple levels of visual motion processing. J Vis 5: 571–578

    Article  PubMed  Google Scholar 

  • Papari G, Campisi P, Petkov N, Neri A (2006) A multiscale approach to contour detection by texture suppression. In: Dougherty ER, Astola JT, Egiazarian KO, Nasrabadi NM, Rizvi SA (eds) Image processing: algorithms and systems, neural network, and machine learning; Proceedings SPIE-IST Electronic Imaging 2006, San Jose, CA, USA, January 16–18, 2006, vol 6064, SPIE, Bellingham, Washington; IST, Springfield, Virginia, pp 60640D-1– 60640D-12

  • Papari G, Campisi P, Petkov N, Neri A (2007) A biologically motivated multiresolution approach to contour detection. EURASIP J Adv Signal Process 2007 (Article ID 71828), 28 pp

  • Petkov N and Kruizinga P (1997). Computational models of visual neurons specialized in the detection of periodic and aperiodic oriented visual stimuli: bar and grating cells. Biol Cybern 76(2): 83–96

    Article  PubMed  CAS  Google Scholar 

  • Petkov N and Westenberg MA (2003). Suppression of contour perception by band-limited noise and its relation to non-classical receptive field inhibition. Biol Cybern 88(10): 236–246

    Article  PubMed  Google Scholar 

  • Pouget A, Zemel RS and Dayan P (2000). Information processing with population codes. Nat Rev Neurosci 1(2): 125–132

    Article  PubMed  CAS  Google Scholar 

  • Raiguel SE, van Hulle MM, Xiao DK, Marcar VL and Orban GA (1995). Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque. Eur J Neurosci 7(10): 2064–2082

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1961). Autocorrelation, a priniciple for the evaluation of sensory information by the central nervous system. In: Rosenblith, WA (eds) Sensory communication, pp 1–2. Wiley, New York

    Google Scholar 

  • Rodrigues J and du Buf JMH (2005). Multi-scale cortical keypoint representation for attention and object detection, Pattern recognition and image analysis. Proc Lect Notes Comput Sci 3523: 255–262

    Google Scholar 

  • Rodrigues J and du Buf JMH (2005). Multi-scale keypoints in V1 and face detection Brain, vision and artificial intelligence. Proc Lect Notes Comput Sci 3704: 205–214

    Article  Google Scholar 

  • Rodrigues J and du Buf JMH (2006). Multi-scale keypoints in V1 and beyond: object segregation, scale selection, saliency maps and face detection. Biosystems 86: 75–90

    Article  PubMed  Google Scholar 

  • Rubin N and Hochstein S (1993). Isolating the effect of one-dimensional motion signals on the perceived direction of moving two-dimensional objects. Vis Res 33(10): 1385–1396

    Article  PubMed  CAS  Google Scholar 

  • Sabatini SP and Solari F (1999). An architectural hypothesis for direction selectivity in the visual cortex: the role of spatially asymmetric intracortical inhibition. Biol Cybern 80(3): 171–183

    Article  PubMed  CAS  Google Scholar 

  • Simoncelli EP and Heeger DJ (1998). A model of neuronal responses in visual area MT. Vis Res 38(5): 743–761

    Article  PubMed  CAS  Google Scholar 

  • Spitzer H and Hochstein S (1985). A complex cell receptive field model. J Neurophysiol 53: 1266–1286

    PubMed  CAS  Google Scholar 

  • Tadin D, Kim J, Doop ML, Gibson C, Blake R, Lappin JS and Park S (2006). Weakened center-surround interactions in visual motion processing in schizophrenia. J Neurosci 26: 11403–11412

    Article  PubMed  CAS  Google Scholar 

  • Tadin D, Lappin JS, Gilroy LA and Blake R (2003). Perceptual consequences of center–surround antagonism in visual motion processing. Nature 424(6946): 312–315

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y and Iwai E (1986). Analysis of local and widefield movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6(1): 134–144

    PubMed  CAS  Google Scholar 

  • ter Haar Romeny BM (2003). Front-end vision and multi-scale image analysis: multi-scale computer vision theory and applications, written in mathematica. Kluwer, Dordrecht

    Google Scholar 

  • Tolhurst DJ and Dean AF (1991). Evaluation of a linear model of directional selectivity in simple cells of the cat’s stirate cortex. Vis Neurosci 6: 421–428

    PubMed  CAS  Google Scholar 

  • van Hateren JH, Ruderman DL (1998). Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex. Proc R Soc Lond B 265: 2315–2320

    Article  Google Scholar 

  • van Rijsbergen C (1979). Information retrieval, 2nd edn. Department of Computer Science, University of Glasgow

    Google Scholar 

  • von der Heydt R, Peterhans E and Dursteler MR (1991). Grating cells in monkey visual cortex: coding texture. In: Blum, B (eds) Channels in the visual nervous system: neurophysiology, psychophysics and models, pp 53–73. Freund, London

    Google Scholar 

  • von der Heydt R, Peterhans E and Dursteler MR (1992). Periodic pattern selective cells in monkey visual cortex. J Neurosci 12: 1416–1434

    PubMed  CAS  Google Scholar 

  • Xiao DK, Marcar V, Raiguel SE and Orban GA (1997). Selectivity of macaque MT/V5 neurons for surface orientation in depth specified by motion. Eur J Neurosci 9(5): 956–964

    Article  PubMed  CAS  Google Scholar 

  • Xiao DK, Raiguel SE, Marcar V and Orban GA (1998). Influence of stimulus speed upon the antagonistic surrounds of area MT/V5 neurons. NeuroReport 9: 1321–1326

    Article  PubMed  CAS  Google Scholar 

  • Xiao DK, Raiguel SE, Marcar V, Koenderink JJ and Orban GA (1995). Spatial heterogenity of inhibitory surrounds in the middle temporal visual area. Proc Natl Acad Sci USA 92(24): 11303–11306

    Article  PubMed  CAS  Google Scholar 

  • Xiao DK, Raiguel SE, Markar V and Orban GA (1997). The spatial distribution of the antagonistic surround of MT/V5 neurons. Cereb Cortex 7(7): 662–667

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Petkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petkov, N., Subramanian, E. Motion detection, noise reduction, texture suppression, and contour enhancement by spatiotemporal Gabor filters with surround inhibition. Biol Cybern 97, 423–439 (2007). https://doi.org/10.1007/s00422-007-0182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-007-0182-0

Keywords

Navigation