Skip to main content

Advertisement

Log in

The effect of posture on maximal oxygen uptake in active healthy individuals

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Semi-supine and supine cardiopulmonary exercise testing (CPET) with concurrent cardiac imaging has emerged as a valuable tool for evaluating patients with cardiovascular disease. Yet, it is unclear how posture effects CPET measures. We aimed to discern the effect of posture on maximal oxygen uptake (VO2max) and its determinants using three clinically relevant cycle ergometers.

Methods

In random order, 10 healthy, active males (Age 27 ± 7 years; BMI 23 ± 2 kg m2) underwent a ramp CPET and subsequent constant workload verification test performed at 105% peak ramp power to quantify VO2max on upright, semi-supine and supine cycle ergometers. Doppler echocardiography was conducted at peak exercise to measure stroke volume (SV) which was multiplied by heart rate (HR) to calculate cardiac output (CO).

Results

Compared to upright (46.8 ± 11.2 ml/kg/min), VO2max was progressively reduced in semi-supine (43.8 ± 10.6 ml/kg/min) and supine (38.2 ± 9.3 ml/kg/min; upright vs. semi-supine vs. supine; all p ≤ 0.005). Similarly, peak power was highest in upright (325 ± 80 W), followed by semi-supine (298 ± 72 W) and supine (200 ± 51 W; upright vs. semi-supine vs. supine; all p < 0.01). Peak HR decreased progressively from upright to semi-supine to supine (186 ± 11 vs. 176 ± 13 vs. 169 ± 12 bpm; all p < 0.05). Peak SV and CO were lower in supine relative to semi-supine and upright (82 ± 22 vs. 92 ± 26 vs. 91 ± 24 ml and 14 ± 3 vs. 16 ± 4 vs. 17 ± 4 l/min; all p < 0.01), but not different between semi-supine and upright.

Conclusion

VO2max is progressively reduced in reclined postures. Thus, posture should be considered when comparing VO2max results between different testing modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Abbreviations

[La]b :

Blood lactate concentration

avO2-diff:

Arteriovenous oxygen difference

CO:

Cardiac Output

CPET:

Cardiopulmonary exercise testing

DBP:

Diastolic blood pressure

HR:

Heart rate

MRI:

Magnetic resonance imaging

RER:

Respiratory exchange ratio

RR:

Respiratory rate

SaO2 :

Oxygen saturation

SV:

Stoke volume

SBP:

Systolic blood pressure

V T :

Tidal volume

V E :

Minute ventilation

VO2 :

Oxygen consumption

VO2max:

Maximal oxygen uptake

W:

Watts

W peak :

Peak power output

References

  • Albouaini K, Egred M, Alahmar A, Wright DJ (2007) Cardiopulmonary exercise testing and its application. Postgrad Med J 83(985):675–682

    PubMed  PubMed Central  Google Scholar 

  • Astorino TA, White AC (2010) Assessment of anaerobic power to verify VO2max attainment. Clin Physiol Funct Imaging 30(4):294–300

    PubMed  Google Scholar 

  • Astorino T, White A, Dalleck L (2009) Supramaximal testing to confirm attainment of VO2max in sedentary men and women. Int J Sports Med 30(04):279–284

    CAS  PubMed  Google Scholar 

  • Åstrand P-O, Saltin B (1961) Maximal oxygen uptake and heart rate in various types of muscular activity. J Appl Physiol 16(6):977–981

    PubMed  Google Scholar 

  • Barber NJ, Ako EO, Kowalik GT, Cheang MH, Pandya B, Steeden JA, Moledina S, Muthurangu V (2016) Magnetic resonance-augmented cardiopulmonary exercise testing: comprehensively assessing exercise intolerance in children with cardiovascular disease. Circ Cardiovasc Imaging 9(12):e005282

    PubMed  Google Scholar 

  • Barker AR, Williams CA, Jones AM, Armstrong N (2011) Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med 45(6):498–503

    CAS  PubMed  Google Scholar 

  • Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70

    PubMed  Google Scholar 

  • Beniaminovitz A, Mancini DM (1999) The role of exercise-based prognosticating algorithms in the selection of patients for heart transplantation. Curr Opin Cardiol 14(2):114

    CAS  PubMed  Google Scholar 

  • Bonzheim SC, Franklin BA, DeWitt C, Marks C, Goslin B, Jarski R, Dann S (1992) Physiologic responses to recumbent versus upright cycle ergometry, and implications for exercise prescription in patients with coronary artery disease. Am J Cardiol 69(1):40–44

    CAS  PubMed  Google Scholar 

  • Chin CWL, Khaw HJ, Luo E, Tan S, White AC, Newby DE, Dweck MR (2014) Echocardiography underestimates stroke volume and aortic valve area: implications for patients with small-area low-gradient aortic stenosis. Can J Cardiol 30(9):1064–1072. https://doi.org/10.1016/j.cjca.2014.04.021

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotsamire D, Sullivan M, Bashore T, Leier CV (1987) Position as a variable for cardiovascular responses during exercise. Clin Cardiol 10(3):137–142

    CAS  PubMed  Google Scholar 

  • Currie PJ, Kelly MJ, Pitt A (1983) Comparison of supine and erect bicycle exercise electrocardiography in coronary heart disease: accentuation of exercise-induced ischemic ST depression by supine posture. Am J Cardiol 52(10):1167–1173

    CAS  PubMed  Google Scholar 

  • Egaña M, O’Riordan D, Warmington S (2010) Exercise performance and VO2 kinetics during upright and recumbent high-intensity cycling exercise. Eur J Appl Physiol 110:39–47. https://doi.org/10.1007/s00421-010-1466-y

    Article  PubMed  Google Scholar 

  • Egana M, Green S (2005) Effect of body tilt on calf muscle performance and blood flow in humans. J Appl Physiol 98(6):2249–2258

    PubMed  Google Scholar 

  • Esposito F, Mathieu-Costello O, Shabetai R, Wagner PD, Richardson RS (2010) Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol 55(18):1945–1954

    PubMed  PubMed Central  Google Scholar 

  • Ferrazza AM, Martolini D, Valli G, Palange P (2009) Cardiopulmonary exercise testing in the functional and prognostic evaluation of patients with pulmonary diseases. Respiration 77(1):3–17. https://doi.org/10.1159/000186694

    Article  CAS  PubMed  Google Scholar 

  • Folkow B, Haglund U, Jodal M, Lundgren O (1971) Blood flow in the calf muscle of man during heavy rhythmic exercise. Acta Physiol Scand 81(2):157–163

    CAS  PubMed  Google Scholar 

  • Forbregd TR, Aloyseus MA, Berg A, Greve G (2019) Cardiopulmonary capacity in children during exercise testing; the differences between treadmill, and upright and supine cycle ergometry. Front Physiol 10:1440

    PubMed  PubMed Central  Google Scholar 

  • Forton K, Motoji Y, Deboeck G, Faoro V, Naeije R (2016) Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships. J Appl Physiol 121(5):1145–1150

    CAS  PubMed  Google Scholar 

  • Gnehm P, Reichenbach S, Altpeter E, Widmer H, Hoppeler H (1997) Influence of different racing positions on metabolic cost in elite cyclists. Med Sci Sports Exerc 29(6):818–823. https://doi.org/10.1097/00005768-199706000-00013

    Article  CAS  PubMed  Google Scholar 

  • Guazzi M, Adams V, Conraads V, Halle M, Mezzani A, Vanhees L, Arena R, Fletcher GF, Forman DE, Kitzman DW, Lavie CJ, Myers J, European Association for Cardiovascular P, Rehabilitation, American Heart A (2012) EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 126(18):2261–2274. https://doi.org/10.1161/CIR.0b013e31826fb946

  • Hill A, Lupton H (1922) The oxygen consumption during running. J Physiol 56(1):32–33

    Google Scholar 

  • Howden EJ, Bigaran A, Beaudry R, Fraser S, Selig S, Foulkes S, Antill Y, Nightingale S, Loi S, Haykowsky MJ (2019) Exercise as a diagnostic and therapeutic tool for the prevention of cardiovascular dysfunction in breast cancer patients. Eur J Prev Cardiol 26(3):305–315

    PubMed  Google Scholar 

  • Howley ET, Bassett DR, Welch HG (1995) Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc 27:1292–1292

    CAS  PubMed  Google Scholar 

  • Hughson RL, Xing HC, Borkhoff C, Butler GC (1991) Kinetics of ventilation and gas exchange during supine and upright cycle exercise. Eur J Appl Physiol 63(3–4):300–307

    CAS  Google Scholar 

  • Katz S, Arish N, Rokach A, Zaltzman Y, Marcus E-L (2018) The effect of body position on pulmonary function: a systematic review. BMC Pulm Med 18(1):159–159. https://doi.org/10.1186/s12890-018-0723-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer B, Massie B, Topic N (1982) Hemodynamic differences between supine and upright exercise in patients with congestive heart failure. Circulation 66(4):820–825

    CAS  PubMed  Google Scholar 

  • La Gerche A, Claessen G, Van de Bruaene A, Pattyn N, Van Cleemput J, Gewillig M, Bogaert J, Dymarkowski S, Claus P, Heidbuchel H (2013) Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging 6(2):329–338

    PubMed  Google Scholar 

  • Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, Edvardsen T, Garbi M, Ha JW, Kane GC (2017) The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30(2):101–138

    PubMed  Google Scholar 

  • Larsen RT, Christensen J, Tang LH, Keller C, Doherty P, Zwisler A-D, Taylor RS, Langberg H (2016) A systematic review and meta-analysis comparing cardiopulmonary exercise test values obtained from the arm cycle and the leg cycle respectively in healthy adults. Int J Sports Phys Ther 11(7):1006–1039

    PubMed  PubMed Central  Google Scholar 

  • Leite SAO, Monk AM, Upham PA, Chacra AR, Bergenstal RM (2009) Low cardiorespiratory fitness in people at risk for type 2 diabetes: early marker for insulin resistance. Diabetol Metab Syndr 1(1):8. https://doi.org/10.1186/1758-5996-1-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyk D, Eßfeld D, Hoffmann U, Wunderlich H-G, Baum K, Stegemann J (1994) Postural effect on cardiac output, oxygen uptake and lactate during cycle exercise of varying intensity. Eur J Appl Physiol 68(1):30–35

    CAS  Google Scholar 

  • Lindhard J (1915) Ueber das Minutenvolum des Herzens bei Ruhe und bei Muskelarbeit. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere 161(5–7):233–383

    Google Scholar 

  • Lopes AD, Alouche SR, Hakansson N, Cohen M (2014) Electromyography during pedaling on upright and recumbent ergometer. Int J Sports Phys Ther 9(1):76–81

    PubMed  PubMed Central  Google Scholar 

  • Martin J, Spirduso W (2001) Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. Eur J Appl Physiol 84(5):413–418

    CAS  PubMed  Google Scholar 

  • McMichael J, Sharpey-Schafer E (1944) Cardiac output in man by a direct fick method: effects of posture, venous pressure change, atropine, and adrenaline. Br Heart J 6(1):33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer T, Faude O, Scharhag J, Urhausen A, Kindermann W (2004) Is lactic acidosis a cause of exercise induced hyperventilation at the respiratory compensation point? Br J Sports Med 38(5):622–625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Midgley AW, McNaughton LR, Polman R, Marchant D (2007) Criteria for determination of maximal oxygen uptake. Sports Med 37(12):1019–1028

    PubMed  Google Scholar 

  • Mizumi S, Goda A, Takeuchi K, Kikuchi H, Inami T, Soejima K, Satoh T (2018) Effects of body position during cardiopulmonary exercise testing with right heart catheterization. Physiol Rep 6(23):e13945

    PubMed  PubMed Central  Google Scholar 

  • Morris DM, Londeree BR (1997) The effects of bicycle crank arm length on oxygen consumption. Can J Appl Physiol 22(5):429–438

    CAS  PubMed  Google Scholar 

  • Myers J (2005) Applications of cardiopulmonary exercise testing in the management of cardiovascular and pulmonary disease. Int J Sports Med 26(S1):S49–S55

    PubMed  Google Scholar 

  • Oldham WM, Lewis GD, Opotowsky AR, Waxman AB, Systrom DM (2016) Unexplained exertional dyspnea caused by low ventricular filling pressures: results from clinical invasive cardiopulmonary exercise testing. Pulm Circ 6(1):55–62

    PubMed  PubMed Central  Google Scholar 

  • Pescatello LS, Riebe D, Thompson PD (2014) ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Piepoli M, Corra U, Agostoni P, Belardinelli R, Cohen-Solal A, Hambrecht R, Prevention TFotIWGoCR (2006) Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology. Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: recommendations for performance and interpretation. Part I: definition of cardiopulmonary exercise testing parameters for appropriate use in chronic heart failure. Eur J Cardiovasc Prev Rehabil 13(2):150–164

  • Poliner LR, Dehmer GJ, Lewis SE, Parkey RW, Blomqvist CG, Willerson JT (1980) Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation 62(3):528–534

    CAS  PubMed  Google Scholar 

  • Poole DC, Jones AM (2017) Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J Appl Physiol 122(4):997–1002

    CAS  PubMed  Google Scholar 

  • Poole DC, Wilkerson DP, Jones AM (2008) Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol 102(4):403–410

    CAS  PubMed  Google Scholar 

  • Quinn TJ, Smith SW, Vroman NB, Kertzer R, Olney WB (1995) Physiologic responses of cardiac patients to supine, recumbent, and upright cycle ergometry. Arch Phys Med Rehabil 76(3):257–261

    CAS  PubMed  Google Scholar 

  • Reybrouck T, Heigenhauser GF, Faulkner JA (1975) Limitations to maximum oxygen uptake in arms, leg, and combined arm-leg ergometry. J Appl Physiol 38(5):774–779

    CAS  PubMed  Google Scholar 

  • Rossiter HB, Kowalchuk JM, Whipp BJ (2006) A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol 100(3):764–770. https://doi.org/10.1152/japplphysiol.00932.20055

    Article  CAS  PubMed  Google Scholar 

  • Rothe CF (1986) Physiology of venous return: an unappreciated boost to the heart. Arch Intern Med 146(5):977–982. https://doi.org/10.1001/archinte.1986.00360170223028

    Article  CAS  PubMed  Google Scholar 

  • Rowell LB (1962) Factors affecting the prediction of the maximal oxygen intake from measurements made during submaximal work with observations related to factors which may limit maximal oxygen intake. University of Minnesota, Minneapolis

    Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54(1):75–159

    CAS  PubMed  Google Scholar 

  • Sawyer BJ, Tucker WJ, Bhammar DM, Gaesser GA (2015) Using a verification test for determination of V [combining dot above] O2max in sedentary adults with obesity. J Strength Cond Res 29(12):3432–3438

    PubMed  Google Scholar 

  • Saynor ZL, Barker AR, Oades PJ, Williams CA (2013) Reproducibility of maximal cardiopulmonary exercise testing for young cystic fibrosis patients. J Cyst Fibros 12(6):644–650

    PubMed  Google Scholar 

  • Schwartz RE, Asnis PD, Cavanaugh JT, Asnis SE, Simmons JE, Lasinski PJ (1991) Short crank cycle ergometry. J Orthop Sports Phys Ther 13(2):95–100

    CAS  PubMed  Google Scholar 

  • Scott A, Antonishen K, Johnston C, Pearce T, Ryan M, Sheel AW, McKenzie DC (2006) Effect of semirecumbent and upright body position on maximal and submaximal exercise testing. Meas Phys Educ Exerc Sci 10(1):41–50

    Google Scholar 

  • Sedgeman D, Dalleck L, Clark IE, Jamnick N, Pettitt R (2013) Analysis of square-wave bouts to verify VO2max. Int J Sports Med 34(12):1058–1062

    CAS  PubMed  Google Scholar 

  • Shen WF, Roubin GS, Fletcher PJ, Choong CYP, Hutton BF, Harris PJ, Kelly DT (1985) Effects of upright and supine position on cardiac rest and exercise response in aortic regurgitation. Am J Cardiol 55(4):428–431

    CAS  PubMed  Google Scholar 

  • Stenberg J, Astrand P, Ekblom B, Royce J, Saltin B (1967) Hemodynamic response to work with different muscle groups, sitting and supine. J Appl Physiol 22(1):61–70

    CAS  PubMed  Google Scholar 

  • Takahashi T, Tanabe K, Nakayama M, Osada N, Yamada S, Ishiguro T, Itoh H, Murayama M (1995) Cardiopulmonary response during supine and sitting bicycle exercises. J Phys Ther Sci 7(1):33–38

    Google Scholar 

  • Terkelsen KE, Clark AL, Hillis WS (1999) Ventilatory response to erect and supine exercise. Med Sci Sports Exerc 31(10):1429–1432

    CAS  PubMed  Google Scholar 

  • Too D (1990) Biomechanics of cycling and factors affecting performance. Sports Med 10(5):286–302

    CAS  PubMed  Google Scholar 

  • Too D, Landwer G (2000) The effect of pedal crank arm length on joint angle and power production in upright cycle ergometry. J Sports Sci 18:153–161. https://doi.org/10.1080/026404100365054

    Article  CAS  PubMed  Google Scholar 

  • Walsh-Riddle M, Blumenthal JA (1989) Cardiovascular responses during upright and semi-recumbent cycle ergometry testing. Med Sci Sports Exerc 21(5):581–585

    CAS  PubMed  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Whipp BJ, Froelicher VF (1987) Principles of exercise testing and interpretation. J Cardiopulm Rehabil Prev 7(4):189

    Google Scholar 

  • Weatherwax R, Richardson T, Beltz N, Nolan P, Dalleck L (2016) Verification testing to confirm VO2max in altitude-residing, endurance-trained runners. Int J Sports Med 37(07):525–530

    CAS  PubMed  Google Scholar 

  • Wood RE, Hills AP, Hunter GR, King NA, Byrne NM (2010) VO2max in overweight and obese adults: do they meet the threshold criteria? Med Sci Sports Exerc 42(3):470–477

    PubMed  Google Scholar 

  • Wood WA, Deal AM, Reeve BB, Abernethy AP, Basch E, Mitchell SA, Shatten C, Hie Kim Y, Whitley J, Serody JS, Shea T, Battaglini C (2013) Cardiopulmonary fitness in patients undergoing hematopoietic SCT: a pilot study. Bone Marrow Transplant 48(10):1342–1349. https://doi.org/10.1038/bmt.2013.58

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

GC is supported by the Frans Van De Werf Fund for Clinical Cardiovascular Research and the Mathilde Horlait-Dapsens Scholarship. RW is supported as postdoctoral clinical researcher by the Fund for Scientific Research Flanders. EJH and ALG are supported by National Heart Foundation of Australia Future Leaders Fellowships.

Author information

Authors and Affiliations

Authors

Contributions

CD, EH, HD, GC, RW and ALG contributed to the conception and design of the study. HD, GC, LW, AM, AL conducted the study testing. HD wrote the manuscript; all authors critically revised the manuscript and gave final approval.

Corresponding author

Correspondence to Erin J. Howden.

Ethics declarations

Conflict of interest

No conflicts of interest are declared by the authors.

Ethics approval

All experimental procedures were performed in accordance with the ethical standards of the institutional review boards of the Alfred Health Research Ethics committee and with the 1964 Helsinki Declaration. The study was approved by the Alfred Health Research Ethics Committee (No: 327/19).

Consent to participate

Written informed consent was obtained from all participants included in the study.

Consent for publication

Participants signed informed consent regarding publishing their data.

Additional information

Communicated by I. Mark olfert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dillon, H.T., Dausin, C., Claessen, G. et al. The effect of posture on maximal oxygen uptake in active healthy individuals. Eur J Appl Physiol 121, 1487–1498 (2021). https://doi.org/10.1007/s00421-021-04630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-021-04630-7

Keywords

Navigation