Skip to main content
Log in

Differential vascular reactivity responses acutely following ingestion of a nitrate rich red spinach extract

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Introduction

Inorganic nitrate ingestion has been posited to affect arterial blood pressure and vascular function.

Purpose

We sought to determine the acute effect of a red spinach extract (RSE) high in inorganic nitrate on vascular reactivity 1-h after ingestion in peripheral conduit and resistance arteries.

Methods

Fifteen (n = 15; males 8, females 7) apparently healthy subjects (aged 23.1 ± 3.3 years; BMI 27.2 ± 3.7 kg/m2) participated in this crossover design, double-blinded study. Subjects reported to the lab ≥2-h post-prandial and consumed RSE (1000 mg dose; ~90 mg nitrate) or placebo (PBO). Venipuncture was performed on three occasions: baseline, 30-min post-ingestion and between 65 to 75-min post-ingestion. Baseline vascular measurements [i.e., calf venous occlusion plethysmography, brachial artery flow-mediated dilation (FMD)], 30-min of continuous blood pressure (BP) and heart rate (HR) analysis, and follow-up vascular measurements beginning at 40-min post-ingestion were also performed.

Results

Humoral nitrate following RSE ingestion was significantly higher at 30- (+54 %; P = 0.039) and 65 to 75-min post-ingestion compared to baseline (+255 %, P < 0.001) and PBO at the same time points (P < 0.05). No significant changes in BP or HR occurred in either condition. Peak reactive hyperemia (RH) calf blood flow increased significantly (+13.7 %; P = 0.016) following RSE ingestion, whereas it decreased (−14.0 %; P = 0.008) following PBO ingestion. No significant differential FMD responses were detected (P > 0.05), though RH was decreased following the baseline measure in both conditions.

Conclusions

RSE significantly increased plasma nitrate 30-min post-ingestion, but acute microvascular (i.e., resistance vasculature) reactivity increases were isolated to the lower limb and no appreciable change in brachial artery FMD was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ΔTr:

Systolic duration of the reflected pressure wave

AgBP:

Augmented central pressure

AgBP@75:

Augmented central pressure normalized to a heart rate of 75 bpm

AIx:

Aortic augmentation index

AIx@75:

Aortic augmentation index normalized to a heart rate of 75 bpm

BMI:

Body mass index

BP:

Blood pressure

CBF:

Calf blood flow

PkCBF:

Peak CBF

TCBF:

Total calf blood flow

CDBP:

Central diastolic blood pressure

CMAP:

Central mean arterial pressure

CPP:

Central pulse pressure

CSBP:

Central systolic blood pressure

eNOS:

Endothelial nitric oxide synthase

FBF:

Forearm blood flow

PkFBF:

Peak FBF

TFBF:

Total FBF

FMD:

Flow-mediated dilation

aFMD:

Absolute FMD

%FMD:

Relative FMD

nFMD:

FMD normalized to shear rate

HR:

Heart rate

MAP:

Mean arterial pressure

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NO x :

Total nitrate and nitrite

PBO:

Placebo

PDBP:

Peripheral diastolic blood pressure

PSBP:

Peripheral systolic blood pressure

PWA:

Pulse wave analysis

RH:

Reactive hyperemia

RSE:

Red spinach extract

T1r:

Time to reflection of the reflected pressure wave

VOP:

Venous occlusion plethysmography

References

  • Adkisson EJ, Casey DP, Beck DT, Gurovich AN, Martin JS, Braith RW (2010) Central, peripheral and resistance arterial reactivity: fluctuates during the phases of the menstrual cycle. Exp Biol Med (Maywood) 235(1):111–118. doi:10.1258/ebm.2009.009186

    Article  CAS  Google Scholar 

  • Bahra M, Kapil V, Pearl V, Ghosh S, Ahluwalia A (2012) Inorganic nitrate ingestion improves vascular compliance but does not alter flow-mediated dilatation in healthy volunteers. Nitric Oxide 26(4):197–202. doi:10.1016/j.niox.2012.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazaral MG, Welch M, Golding LA, Badhwar K (1990) Comparison of brachial and radial arterial pressure monitoring in patients undergoing coronary artery bypass surgery. Anesthesiology 73(1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC (2003) Oxygen exchange profile in rat muscles of contrasting fibre types. J Physiol 549(Pt 2):597–605. doi:10.1113/jphysiol.2002.035915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, McKenzie H (1994) Stomach NO synthesis. Nature 368(6471):502. doi:10.1038/368502a0

    Article  CAS  PubMed  Google Scholar 

  • Betik AC, Luckham VB, Hughson RL (2004) Flow-mediated dilation in human brachial artery after different circulatory occlusion conditions. Am J Physiol Heart Circ Physiol 286(1):H442–H448. doi:10.1152/ajpheart.00314.2003

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Bell JB, Mohanty JG, Nagababu E, Rifkind JM (2009) Nitrite enhances RBC hypoxic ATP synthesis and the release of ATP into the vasculature: a new mechanism for nitrite-induced vasodilation. Am J Physiol Heart Circ Physiol 297(4):H1494–H1503. doi:10.1152/ajpheart.01233.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505. doi:10.1038/nm954

    Article  CAS  PubMed  Google Scholar 

  • Dejam A, Hunter CJ, Schechter AN, Gladwin MT (2004) Emerging role of nitrite in human biology. Blood Cells Mol Dis 32(3):423–429. doi:10.1016/j.bcmd.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  • Engelke KA, Halliwill JR, Proctor DN, Dietz NM, Joyner MJ (1996) Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm. J Appl Physiol (1985) 81(4):1807–1814

    CAS  Google Scholar 

  • Ferguson SK, Holdsworth CT, Wright JL, Fees AJ, Allen JD, Jones AM, Musch TI, Poole DC (2015) Microvascular oxygen pressures in muscles comprised of different fiber types: impact of dietary nitrate supplementation. Nitric Oxide 48:38–43. doi:10.1016/j.niox.2014.09.157

    Article  CAS  PubMed  Google Scholar 

  • Gautier C, van Faassen E, Mikula I, Martasek P, Slama-Schwok A (2006) Endothelial nitric oxide synthase reduces nitrite anions to NO under anoxia. Biochem Biophys Res Commun 341(3):816–821. doi:10.1016/j.bbrc.2006.01.031

    Article  CAS  PubMed  Google Scholar 

  • Ghosh SM, Kapil V, Fuentes-Calvo I, Bubb KJ, Pearl V, Milsom AB, Khambata R, Maleki-Toyserkani S, Yousuf M, Benjamin N, Webb AJ, Caulfield MJ, Hobbs AJ, Ahluwalia A (2013) Enhanced vasodilator activity of nitrite in hypertension: critical role for erythrocytic xanthine oxidoreductase and translational potential. Hypertension 61(5):1091–1102. doi:10.1161/HYPERTENSIONAHA.111.00933

    Article  CAS  PubMed  Google Scholar 

  • Gilchrist M, Shore AC, Benjamin N (2011) Inorganic nitrate and nitrite and control of blood pressure. Cardiovasc Res 89(3):492–498. doi:10.1093/cvr/cvq309

    Article  CAS  PubMed  Google Scholar 

  • Harms MP, Wesseling KH, Pott F, Jenstrup M, Van Goudoever J, Secher NH, Van Lieshout JJ (1999) Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin Sci 97(3):291–301

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Nishiyama SK, Wray DW, Richardson RS (2010) Ultrasound assessment of flow-mediated dilation. Hypertension 55(5):1075–1085. doi:10.1161/HYPERTENSIONAHA.110.150821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Kajiyama G, Oshima T (2001) A noninvasive measurement of reactive hyperemia that can be used to assess resistance artery endothelial function in humans. Am J Cardiol 87(1):121–125, A129

    Article  CAS  PubMed  Google Scholar 

  • Hobbs DA, George TW, Lovegrove JA (2013) The effects of dietary nitrate on blood pressure and endothelial function: a review of human intervention studies. Nutr Res Rev 26(2):210–222. doi:10.1017/S0954422413000188

    Article  CAS  PubMed  Google Scholar 

  • Hokanson DE, Sumner DS, Strandness DE Jr (1975) An electrically calibrated plethysmograph for direct measurement of limb blood flow. IEEE Trans Biomed Eng 22(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Imholz BP, Wieling W, van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38(3):605–616

    Article  CAS  PubMed  Google Scholar 

  • Jansen JR, Schreuder JJ, Mulier JP, Smith NT, Settels JJ, Wesseling KH (2001) A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth 87(2):212–222

    Article  CAS  PubMed  Google Scholar 

  • Jansson EA, Huang L, Malkey R, Govoni M, Nihlen C, Olsson A, Stensdotter M, Petersson J, Holm L, Weitzberg E, Lundberg JO (2008) A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat Chem Biol 4(7):411–417. doi:10.1038/nchembio.92

    Article  CAS  PubMed  Google Scholar 

  • Jellema WT, Wesseling KH, Groeneveld AB, Stoutenbeek CP, Thijs LG, van Lieshout JJ (1999) Continuous cardiac output in septic shock by simulating a model of the aortic input impedance: a comparison with bolus injection thermodilution. Anesthesiology 90(5):1317–1328

    Article  CAS  PubMed  Google Scholar 

  • Johnson MA, Polgar J, Weightman D, Appleton D (1973) Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 18(1):111–129

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Ferguson SK, Bailey SJ, Vanhatalo A, Poole DC (2016) Fiber type-specific effects of dietary nitrate. Exerc Sport Sci Rev 44(2):53–60. doi:10.1249/JES.0000000000000074

    Article  PubMed  Google Scholar 

  • Joyner MJ, Dietz NM, Shepherd JT (2001) From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs. J Appl Physiol (1985) 91(6):2431–2441

    CAS  Google Scholar 

  • Lal SK, Henderson RJ, Cejnar M, Hart MG, Hunyor SN (1995) Physiological influences on continuous finger and simultaneous intra-arterial blood pressure. Hypertension 26(2):307–314

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JO, Govoni M (2004) Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic Biol Med 37(3):395–400. doi:10.1016/j.freeradbiomed.2004.04.027

    Article  CAS  PubMed  Google Scholar 

  • Lundberg JO, Weitzberg E, Lundberg JM, Alving K (1994) Intragastric nitric oxide production in humans: measurements in expelled air. Gut 35(11):1543–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167. doi:10.1038/nrd2466

    Article  CAS  PubMed  Google Scholar 

  • Mahieu D, Kips J, Rietzschel ER, De Buyzere ML, Verbeke F, Gillebert TC, De Backer GG, De Bacquer D, Verdonck P, Van Bortel LM, Segers P, Asklepios I (2010) Noninvasive assessment of central and peripheral arterial pressure (waveforms): implications of calibration methods. J Hypertens 28(2):300–305. doi:10.1097/HJH.0b013e3283340a1a

    Article  CAS  PubMed  Google Scholar 

  • Martin JS, Beck DT, Gurovich AN, Braith RW (2010) The acute effects of smokeless tobacco on central aortic blood pressure and wave reflection characteristics. Exp Biol Med (Maywood) 235(10):1263–1268. doi:10.1258/ebm.2010.009376

    Article  CAS  Google Scholar 

  • Martin JS, Borges AR, Beck DT (2015a) Peripheral conduit and resistance artery function are improved following a single, 1-h bout of peristaltic pulse external pneumatic compression. Eur J Appl Physiol 115(9):2019–2029. doi:10.1007/s00421-015-3187-8

    Article  PubMed  Google Scholar 

  • Martin JS, Borges AR, Christy JBT, Beck DT (2015b) Considerations for SphygmoCor radial artery pulse wave analysis: side selection and peripheral arterial blood pressure calibration. Hypertens Res 38(10):675–683. doi:10.1038/hr.2015.36

    Article  PubMed  Google Scholar 

  • Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P, Creager MA (1996) Postischemic vasodilation in human forearm is dependent on endothelium-derived nitric oxide. Am J Physiol 270(4 Pt 2):H1435–H1440

    CAS  PubMed  Google Scholar 

  • Murgo JP, Westerhof N, Giolma JP, Altobelli SA (1981) Manipulation of ascending aortic pressure and flow wave reflections with the Valsalva maneuver: relationship to input impedance. Circulation 63(1):122–132

    Article  CAS  PubMed  Google Scholar 

  • Patterson GC, Whelan RF (1955) The measurement of blood flow during reactive hyperaemia in man. J Physiol 127(1):13–14P

    CAS  PubMed  Google Scholar 

  • Pauca AL, O’Rourke MF, Kon ND (2001) Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 38(4):932–937

    Article  CAS  PubMed  Google Scholar 

  • Penaz J, Voigt A, Teichmann W (1976) Contribution to the continuous indirect blood pressure measurement. Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete 31(24):1030–1033

    CAS  PubMed  Google Scholar 

  • Petersson J, Carlstrom M, Schreiber O, Phillipson M, Christoffersson G, Jagare A, Roos S, Jansson EA, Persson AE, Lundberg JO, Holm L (2009) Gastroprotective and blood pressure lowering effects of dietary nitrate are abolished by an antiseptic mouthwash. Free Radic Biol Med 46(8):1068–1075. doi:10.1016/j.freeradbiomed.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  • Picone D, Climie R, Keske M, Sharman J (2014) Non-invasive estimation of exercise central blood pressure by radial tonometry may be underestimated due to brachial-to-radial-systolic-blood-pressure-amplification and is related to upper limb blood flow velocity. Artery Res 8(4):124–125. doi:10.1016/j.artres.2014.09.062

    Article  Google Scholar 

  • Schutte AE, Huisman HW, van Rooyen JM, Malan NT, Schutte R (2004) Validation of the Finometer device for measurement of blood pressure in black women. J Hum Hypertens 18(2):79–84. doi:10.1038/sj.jhh.1001639

    Article  CAS  PubMed  Google Scholar 

  • Sharman JE, Lim R, Qasem AM, Coombes JS, Burgess MI, Franco J, Garrahy P, Wilkinson IB, Marwick TH (2006) Validation of a generalized transfer function to noninvasively derive central blood pressure during exercise. Hypertension 47(6):1203–1208. doi:10.1161/01.HYP.0000223013.60612.72

    Article  CAS  PubMed  Google Scholar 

  • Shepherd JT (2011) Circulation to skeletal muscle. In: Comprehensive physiology. Wiley, New York. doi:10.1002/cphy.cp020311

  • Shih YT, Cheng HM, Sung SH, Hu WC, Chen CH (2011) Quantification of the calibration error in the transfer function-derived central aortic blood pressures. Am J Hypertens 24(12):1312–1317. doi:10.1038/ajh.2011.146

    Article  PubMed  Google Scholar 

  • Subramanian D, Gupta S (2016) Pharmacokinetic study of amaranth extract in healthy human subjects—a randomized trial. Nutrition. doi:10.1016/j.nut.2015.12.041

    PubMed  Google Scholar 

  • Totzeck M, Hendgen-Cotta UB, Luedike P, Berenbrink M, Klare JP, Steinhoff H-J, Semmler D, Shiva S, Williams D, Kipar A, Gladwin MT, Schrader J, Kelm M, Cossins AR, Rassaf T (2012) Nitrite regulates hypoxic vasodilation via myoglobin-dependent nitric oxide generation. Circulation 126(3):325–334. doi:10.1161/circulationaha.111.087155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanin AF, Bevers LM, Slama-Schwok A, van Faassen EE (2007) Nitric oxide synthase reduces nitrite to NO under anoxia. Cell Mol Life Sci 64(1):96–103. doi:10.1007/s00018-006-6374-2

    Article  CAS  PubMed  Google Scholar 

  • Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM (2005) Noninvasive assessment of local pulse pressure: importance of brachial-to-radial pressure amplification. Hypertension 46(1):244–248. doi:10.1161/01.HYP.0000166723.07809.7e

    Article  CAS  PubMed  Google Scholar 

  • Webb AJ, Patel N, Loukogeorgakis S, Okorie M, Aboud Z, Misra S, Rashid R, Miall P, Deanfield J, Benjamin N, MacAllister R, Hobbs AJ, Ahluwalia A (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51(3):784–790. doi:10.1161/HYPERTENSIONAHA.107.103523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White WB, Berson AS, Robbins C, Jamieson MJ, Prisant LM, Roccella E, Sheps SG (1993) National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension 21(4):504–509

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, Webb DJ (1998) Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens 16(12 Pt 2):2079–2084

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525(Pt 1):263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zweier JL, Wang P, Samouilov A, Kuppusamy P (1995) Enzyme-independent formation of nitric oxide in biological tissues. Nat Med 1(8):804–809

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by DolCas Biotech LLC (Landing, NJ, USA) through a contract awarded to J.S.M. The authors wish to thank the participants for their time and compliance with demands associated with the study protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Martin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haun, C.T., Kephart, W.C., Holland, A.M. et al. Differential vascular reactivity responses acutely following ingestion of a nitrate rich red spinach extract. Eur J Appl Physiol 116, 2267–2279 (2016). https://doi.org/10.1007/s00421-016-3478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3478-8

Keywords

Navigation