Skip to main content
Log in

Strenuous physical exercise accelerates the lipid peroxide clearing transport by HDL

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Physical exercise has cardioprotective functions, which have been partly linked to high-density lipoprotein (HDL), and its functions. We studied the effects of endogenous oxidative stress, induced by acute exhaustive physical exercise, on concentration of oxidized HDL lipids.

Methods

Twenty-four male national top-level endurance runners, 12 middle-distance runners and 12 marathon runners performed a maximal run on a treadmill until exhaustion. We analyzed concentrations of oxidized HDL (oxHDLlipids) and LDL lipids (oxLDLlipids), serum antioxidant potential (TRAP), paraoxonase activity and malondialdehyde. Venous blood samples were taken before, immediately, 15 and 90 min after exercise.

Results

Immediately after the treadmill run the concentration of oxHDLlipids was increased by 24 % (p < 0.01). Simultaneously, the ratio of oxHDLlipids to oxLDLlipids increased by 55 % and the oxLDLlipids levels decreased by 19 % (p < 0.001), while serum malondialdehyde and TRAP increased by 54 % (p < 0.001) and 29 % (p < 0.01), respectively. After the 90 min recovery the concentration of oxHDLlipids was decreased towards the pre-exercise level, but that of oxLDLlipids remained decreased below pre-exercise values (p < 0.001). The change in oxLDLlipids after the run correlated positively with VO2max (r = 0.67, p < 0.001) and negatively with the change in paraoxonase activity (r = −0.47, p < 0.05).

Conclusions

We conclude that acute exhaustive physical exercise increased the concentration of oxHDLlipids and decreased that of oxLDLlipids and the ratio of oxLDLlipids to oxHDLlipids, which suggests that during physical exercise HDL has an active role in the removal of lipid peroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABAB:

2,2′Azobis(2-amidinopropane)HCl

ANOVA:

Analysis of variance

BMI:

Body mass index

HCL:

Hydrochloride

HDL:

High-density lipoproteins

HLPC:

High-performance liquid chromatography

LDL:

Low-density lipoproteins

MDA:

Malondialdehyde

oxHDLlipids:

Oxidized HDL lipids

oxLDLlipids:

Oxidized LDL lipids

TRAP:

Total peroxyl radical trapping antioxidant potential

VO2max :

Maximal oxygen uptake

References

  • Ahotupa M, Ruutu M, Mäntylä E (1996) Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem 29:139–144

    Article  CAS  PubMed  Google Scholar 

  • Ahotupa M, Marniemi J, Lehtimäki T, Talvinen K, Raitakari OT, Vasankari T, Viikari J, Luoma J, Ylä-Herttuala S (1998) Baseline diene conjugation in LDL lipids as a direct measure of in vivo LDL oxidation. Clin Biochem 31:257–261

    Article  CAS  PubMed  Google Scholar 

  • Ahotupa M, Suomela JP, Vuorimaa T, Vasankari T (2010) Lipoprotein-specific transport of circulating lipid peroxides. Ann Med 42:521–529

    Article  CAS  PubMed  Google Scholar 

  • Barter P, Gotto AM, LaRosa JC, Maroni J, Szarek M, Grundy SM, Kastelein JJ, Bittner V, Fruchart JC (2007) HDL cholesterol, very low levels of LDL cholesterol, and cardiovascular events. N Engl J Med 357:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Billat V, Renoux JC, Pinoteau J, Petit B, Koralsztein J-P (1994) Reproducibility of running time to exhaustion at VO2max in subelite runners. Med Sci Sports Exerc 26:254–257

    Article  CAS  PubMed  Google Scholar 

  • Billat V, Renoux JC, Pinoteau J, Petit B, Koralsztein J-P (1995) Times to exhaustion at 90, 100 and 105 % of velocity at VO2max (maximal aerobic speed) and critical speed in elite long distance runners. Arch Physiol Biochem 103:129–135

    Article  CAS  PubMed  Google Scholar 

  • Billat VL, Hill DW, Pinoteau J, Petit B, Koralsztein J-P (1996) Effect of protocol on determination of the velocity at VO2max and its time to exhaustion. Arch Physiol Biochem 104:313–321

    Article  CAS  PubMed  Google Scholar 

  • Bloomer RJ (2008) Effect of exercise on oxidative stress biomarkers. Adv Clin Chem 46:1–50

    Article  CAS  PubMed  Google Scholar 

  • Bowry VW, Stanley KK, Stocker R (1992) High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc Natl Acad Sci USA 89:10316–10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brites F, ZagoV Verona J, Muzzio ML, Wikinski R, Schreier L (2006) HDL capacity to inhibit LDL oxidation in well-trained triathletes. Life Sci 78:3074–3081

    Article  CAS  PubMed  Google Scholar 

  • Cakmak A, Zeyrek D, Atas A, Erel O (2010) Paraoxonase activity in athletic adolescents. Pediatr Exerc Sci 22:93–104

    Article  PubMed  Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37:737–763

    Article  PubMed  Google Scholar 

  • Durstine JL, Haskell WL (1994) Effects of exercise training on plasma lipids and lipoproteins. Exerc Sport Sci Rev 22:477–521

    CAS  PubMed  Google Scholar 

  • Enns DL, Tiidus PM (2010) The influence of estrogen on skeletal muscle: sex matters. Sports Med 40:41–58

    Article  PubMed  Google Scholar 

  • Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modifications of LDL. Free Radic Biol Med 13:341–390

    Article  CAS  PubMed  Google Scholar 

  • Fisher-Wellman K, Bloomer RJ (2009) Acute exercise and oxidative stress: a 30 years history. Dyn Med 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Harangi M, Seres I, Varga Z, Emri G, Szilvassy Z, Paragh G, Remenyik E (2004) Atorvastatin effect on high-density lipoprotein-associated paraoxonase activity and oxidative DNA damage. Eur J Clin Pharmacol 60:685–691

    Article  CAS  PubMed  Google Scholar 

  • Jenkins RR (1988) Free radical chemistry. Relationship to exercise. Sports Med 5:156–170

    Article  CAS  PubMed  Google Scholar 

  • Kanter MM, Nolte LA, Holloczy JO (1993) Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J Appl Physiol 74:965–969

    CAS  PubMed  Google Scholar 

  • Kaur H, Halliwell B (1990) Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem Biol Interact 73:235–247

    Article  CAS  PubMed  Google Scholar 

  • Kontush A, Chantepie S, Chapman MJ (2003) Small dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol 23:1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Kresanov P, Vasankari T, Ahotupa M, Kaikkonen J, Juonala M, Kähönen M, Lehtimäki T, Viikari J, Raitakari OT (2015) Paraoxonase-1 and oxidized lipoprotein lipids. The Cardiovascular Risk in Young Finns Study. Atherosclerosis 241:502–506

    Article  CAS  PubMed  Google Scholar 

  • Leon AS, Sanchez OA (2001) Response of blood lipids to exercise training alone and combined with dietary intervention. Med Sci Sports Exerc 33:502–515

    Article  Google Scholar 

  • Lindsay FH, Hawley JA, Myburgh KH, Schomer HH, Noakes TD, Dennis SC (1996) Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 8:1427–1434

    Article  Google Scholar 

  • Mackness MI, Arrol S, Durrington PN (1991) Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 29(286):152–154

    Article  Google Scholar 

  • Mackness MI, Durrington PN, Mackness B (2000) How HDL protects against the effects of lipid peroxidation. Curr Opin Lipidol 11:383–388

    Article  CAS  PubMed  Google Scholar 

  • Magness S (2014) The science of running. In: Magness S (ed) Training for each event. Origin Press, USA, pp 253–284

    Google Scholar 

  • Mahoney DJ, Tarnopolsky MA (2005) Understanding skeletal muscle adaptation to exercise training in humans: contributions from microarray studies. Phys Med Rehabil Clin N Am 16:859–873

    Article  PubMed  Google Scholar 

  • Monda KL, Ballantyne CL, North KE (2009) Longitudinal impact of physical activity on lipid profiles in middle-aged adults: the Atherosclerosis Risk in Communities Study. J Lipid Res 50:1685–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora S, Cook N, Buring JE, Ridker PM, Lee IM (2007) Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation 116:2110–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navab M, Reddy ST, Van Lenten BJ, Fogelman AM (2011) HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol 8:222–232

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Santanam N, Auge N (1998) Oxidised low-density lipoprotein: a two-faced Janus in coronary artery disease? Biochem Pharmacol 56:279–284

    Article  CAS  PubMed  Google Scholar 

  • Pilz J, Meineke I, Gleiter CH (2000) Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. J Chromatogr B Biomed Sci Appl 742:315–325

    Article  CAS  PubMed  Google Scholar 

  • Pincemail J, Deby C, Camus G, Pirnay F, Bouchez R, Massaux L, Goutier T (1988) Tocopherol mobilization during intensive exercise. Eur J Appl Physiol 57:189–191

    Article  CAS  Google Scholar 

  • Powell KE, Thompson PD, Caspersen CJ, Kendrick JS (1987) Physical activity and the incidence of CHD. Annu Rev Public Health 8:253–287

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Chung HY, Koltai E, Taylor AW, Goto S (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7:34–42

    Article  CAS  PubMed  Google Scholar 

  • Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18:1208–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao B, Heinecke JW (2009) HDL, lipid peroxidation, and atherosclerosis. J Lipid Res 50:716–722

    Article  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  • Steinberg D, Witztum JL (2002) Is the oxidative modifications hypothesis relevant to human atherosclerosis? Do the antioxidant trials conducted to date reflect the hypothesis? Circulation 105:2107–2111

    Article  PubMed  Google Scholar 

  • Svensson MB, Ekblom B, Cotgreave IA, Norman B, Sjöberg B, Ekblom O, Sjödin B, Sjödin A (2002) Adaptive stress response of glutathione and uric acid metabolism in man following controlled exercise and diet. Acta Physiol Scand 176:43–56

    Article  CAS  PubMed  Google Scholar 

  • Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O’Keefe JH, Milani RV, Blair SN, Church TS (2013) Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J 77:281–292

    Article  PubMed  Google Scholar 

  • Väisänen S, Gävert J, Julkunen A, Voutilainen E, Penttilä I (1992) Contents of apolipoprotein A-I, A-II and B of the human serum fractions for high-density and low-density lipoproteins prepared by common precipitation methods. Scand J Clin Lab Invest 52:853–862

    Article  PubMed  Google Scholar 

  • Välimäki IA, Vuorimaa T, Ahotupa M, Kekkonen R, Korpela R, Vasankari T (2012) Decreased training volume and increased carbohydrate intake increases oxidized LDL levels. Int J Sports Med 33:291–296

    Article  PubMed  Google Scholar 

  • Vasankari TJ, Kujala UM, Vasankari TM, Vuorimaa T, Ahotupa M (1997) Effects of acute prolonged exercise on serum and LDL oxidation and antioxidant defences. Free Radic Biol Med 22:509–513

    Article  CAS  PubMed  Google Scholar 

  • Vasankari TJ, Kujala UM, Vasankari TM, Ahotupa M (1998) Reduced oxidized LDL levels after 10-months exercise program. Med Sci Sports Exerc 30:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Vasankari T, Ahotupa M, Toikka J, Mikkola J, Irjala K, Pasanen P, Neuvonen K, Raitakari O, Viikari J (2001) Oxidized LDL and thickness of carotid intima-media are associated with coronary atherosclerosis in middle-aged men: lower levels of oxidized LDL with statin therapy. Atherosclerosis 155:403–412

    Article  CAS  PubMed  Google Scholar 

  • Vuorimaa T, Ahotupa M, Irjala K, Vasankari T (2005) Acute prolonged exercise reduces moderately oxidized LDL in healthy men. Int J Sports Med 26:420–425

    Article  CAS  PubMed  Google Scholar 

  • Wagganer JD, Robison CE, Ackerman TA, Davis PG (2015) Effects of exercise accumulation on plasma lipids and lipoproteins. Appl Physiol Nutr Metab 40:441–447

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iiro A. Välimäki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Välimäki, I.A., Vuorimaa, T., Ahotupa, M. et al. Strenuous physical exercise accelerates the lipid peroxide clearing transport by HDL. Eur J Appl Physiol 116, 1683–1691 (2016). https://doi.org/10.1007/s00421-016-3422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3422-y

Keywords

Navigation