Skip to main content
Log in

Effects of mild hypohydration on cooling during cold-water immersion following exertional hyperthermia

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

We investigated the effects of mild hypohydration compared to euhydration on the cooling efficacy of cold-water immersion (CWI).

Methods

Fourteen participants (eight male, six female; age 26 ± 5 years; ht 1.77 ± 0.08 m; wt 72.2 ± 8.8 kg; 20.6 ± 7.4 % body fat) completed one euhydrated (EU) trial followed by one hypohydrated trial (HY; via 24 h fluid restriction) in an environmental chamber (33.6 ± 0.9 °C, 55.8 ± 1.7 % RH). Volitional exercise was performed in a manner that matched end-exercise rectal temperature (T re) through repeating exercise mode and intensity. Participants were then immersed in ice water (2.0 ± 0.8 °C) until T re reached 38.1 °C or for a maximum of 15 min. T re, heart rate (HR), skin blood flux (SBF) and mean skin temperature (T sk) were monitored continuously during cooling.

Results

Pre-cooling body mass was decreased in the HY trial (−2.66 ± 1.23 % body mass) and maintained in the EU trial (−0.66 ± 0.44 %) compared to baseline mass (P < 0.001). Cooling rates were faster when EU (0.14 ± 0.05 °C/min) compared to HY (0.11 ± 0.05 °C/min, P = 0.046). HR, SBF, and T sk were not different between EU and HY trials (P > 0.05), however, all variables significantly decreased with immersion independent of hydration status (P < 0.001).

Conclusion

The primary finding was that hypohydration modestly attenuates the rate of cooling in exertionally hyperthermic individuals. Regardless of hydration status, the cooling efficacy of CWI was preserved and should continue to be utilized in the treatment of exertional hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CWI:

Cold-water immersion

EU:

Euhydration

HY:

Hypohydration

References

  • Armstrong LE, Costill DL, Fink WJ (1985) Influence of diuretic-induced dehydration on competitive running performance. Med Sci Sports Exerc 17(4):456–461

    Article  CAS  PubMed  Google Scholar 

  • Armstrong LE, Pumerantz AC, Fiala KA, Roti MW, Kavouras SA, Casa DJ, Maresh CM (2010) Human hydration indices: acute and longitudinal reference values. Int J Sport Nutr Exerc Metab 20(2):145–153

    PubMed  Google Scholar 

  • Arnaoutis G, Kavouras SA, Angelopoulou A, Skoulariki C, Bismpikou S, Mourtakos S, Sidossis LS (2014) Fluid balance during training in elite young athletes of different sports. J Strength Cond Res 29(12):3447–3452

  • Bruning RS, Santhanam L, Stanhewicz AE, Smith CJ, Berkowitz DE, Kenney WL, Holowatz LA (2012) Endothelial nitric oxide synthase mediates cutaneous vasodilation during local heating and is attenuated in middle-aged human skin. J Appl Physiol (1985) 112(12):2019–2026

    Article  CAS  Google Scholar 

  • Casa DJ, McDermott BP, Lee EC, Yeargin SW, Armstrong LE, Maresh CM (2007) Cold water immersion: the gold standard for exertional heatstroke treatment. Exerc Sport Sci Rev 35(3):141–149

    Article  PubMed  Google Scholar 

  • Casa DJ, Guskiewicz KM, Anderson SA, Courson RW, Heck JF, Jimenez CC, McDermott BP, Miller MG, Stearns RL, Swartz EE, Walsh KM (2012) National athletic trainers’ association position statement: preventing sudden death in sports. J Athl Train 47(1):96–118

    PubMed  PubMed Central  Google Scholar 

  • Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, Ferrara MS, Miller KC, O’Connor F, Sawka MN, Yeargin SW (2015) National Athletic Trainers’ Association Position statement: exertional heat illnesses. J Athl Train 50(9):986–1000

    PubMed  Google Scholar 

  • Charkoudian N, Halliwill JR, Morgan BJ, Eisenach JH, Joyner MJ (2003) Influences of hydration on post-exercise cardiovascular control in humans. J Physiol 552(Pt 2):635–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements JM, Casa DJ, Knight J, McClung JM, Blake AS, Meenen PM, Gilmer AM, Caldwell KA (2002) Ice-water immersion and cold-water immersion provide similar cooling rates in runners with exercise-induced hyperthermia. J Athl Train 37(2):146–150

    PubMed  PubMed Central  Google Scholar 

  • Demartini JK, Casa DJ, Stearns R, Belval L, Crago A, Davis R, Jardine J (2015) Effectiveness of cold water immersion in the treatment of exertional heat stroke at the falmouth road race. Med Sci Sports Exerc 47(2):240–245

    Article  PubMed  Google Scholar 

  • Distefano LJ, Casa DJ, Vansumeren MM, Karslo RM, Huggins RA, Demartini JK, Stearns RL, Armstrong LE, Maresh CM (2013) Hypohydration and hyperthermia impair neuromuscular control after exercise. Med Sci Sports Exerc 45(6):1166–1173

    Article  PubMed  Google Scholar 

  • Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5(5):303–311 (discussion 312–303)

    PubMed  Google Scholar 

  • Eglin CM, Tipton MJ (2005) Repeated cold showers as a method of habituating humans to the initial responses to cold water immersion. Eur J Appl Physiol 93(5–6):624–629

    Article  PubMed  Google Scholar 

  • Epstein Y, Roberts WO (2011) The pathopysiology of heat stroke: an integrative view of the final common pathway. Scand J Med Sci Sports 21(6):742–748

    Article  CAS  PubMed  Google Scholar 

  • Flouris AD, Wright-Beatty HE, Friesen BJ, Casa DJ, Kenny GP (2014) Treatment of exertional heat stress developed during low or moderate physical work. Eur J Appl Physiol 114(12):2551–2560

    Article  PubMed  Google Scholar 

  • Friesen BJ, Carter MR, Poirier MP, Kenny GP (2014) Water immersion in the treatment of exertional hyperthermia: physical determinants. Med Sci Sports Exerc 46(9):1727–1735

    Article  PubMed  Google Scholar 

  • Gabrielsen A, Johansen LB, Norsk P (1993) Central cardiovascular pressures during graded water immersion in humans. J Appl Physiol (1985) 75(2):581–585

    CAS  Google Scholar 

  • Gagnon D, Lemire BB, Jay O, Kenny GP (2010) Aural canal, esophageal, and rectal temperatures during exertional heat stress and the subsequent recovery period. J Athl Train 45(2):157–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagnon D, Lynn AG, Binder K, Boushel RC, Kenny GP (2012) Mean arterial pressure following prolonged exercise in the heat: influence of training status and fluid replacement. Scand J Med Sci Sports 22(5):e99–e107

    Article  CAS  PubMed  Google Scholar 

  • Godek SF, Godek JJ, Bartolozzi AR (2005) Hydration status in college football players during consecutive days of twice-a-day preseason practices. Am J Sports Med 33(6):843–851

    Article  PubMed  Google Scholar 

  • González-Alonso J, Mora-Rodríguez R, Below PR, Coyle EF (1995) Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. J Appl Physiol (1985) 79(5):1487–1496

    Google Scholar 

  • González-Alonso J, Mora-Rodríguez R, Below PR, Coyle EF (1997) Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol (1985) 82(4):1229–1236

    Google Scholar 

  • González-Alonso J, Calbet JA, Nielsen B (1998) Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J Physiol 513(Pt 3):895–905

    Article  PubMed  PubMed Central  Google Scholar 

  • González-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B (1999) Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (1985) 86(3):1032–1039

    Google Scholar 

  • González-Alonso J, Mora-Rodríguez R, Coyle EF (2000) Stroke volume during exercise: interaction of environment and hydration. Am J Physiol Heart Circ Physiol 278(2):H321–H330

    PubMed  Google Scholar 

  • Heinonen I, Duncker DJ, Knuuti J, Kalliokoski KK (2012) The effect of acute exercise with increasing workloads on inactive muscle blood flow and its heterogeneity in humans. Eur J Appl Physiol 112(10):3503–3509

    Article  CAS  PubMed  Google Scholar 

  • Ihsan M, Markworth JF, Watson G, Choo HC, Govus A, Pham T, Hickey A, Cameron-Smith D, Abbiss CR (2015) Regular postexercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 309(3):R286–R294

    Article  CAS  PubMed  Google Scholar 

  • Judelson DA, Maresh CM, Farrell MJ, Yamamoto LM, Armstrong LE, Kraemer WJ, Volek JS, Spiering BA, Casa DJ, Anderson JM (2007) Effect of hydration state on strength, power, and resistance exercise performance. Med Sci Sports Exerc 39(10):1817–1824

    Article  PubMed  Google Scholar 

  • Kavouras SA, Arnaoutis G, Makrillos M, Garagouni C, Nikolaou E, Chira O, Ellinikaki E, Sidossis LS (2012) Educational intervention on water intake improves hydration status and enhances exercise performance in athletic youth. Scand J Med Sci Sports 22(5):684–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC (2014) Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 46(5):860–876

    Article  CAS  PubMed  Google Scholar 

  • Lemire BB, Gagnon D, Jay O, Kenny GP (2009) Differences between sexes in rectal cooling rates after exercise-induced hyperthermia. Med Sci Sports Exerc 41(8):1633–1639

    Article  PubMed  Google Scholar 

  • Mawhinney C, Jones H, Joo CH, Low DA, Green DJ, Gregson W (2013) Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Med Sci Sports Exerc 45(12):2277–2285

    Article  PubMed  Google Scholar 

  • McDermott BP, Casa DJ, Lee EC, Yamamoto LM, Beasley KN, Emmanuel H, Pescatello LS, Kraemer WJ, Anderson JM, Armstrong LE, Maresh CM (2013) The influence of rehydration mode after exercise dehydration on cardiovascular function. J Strength Cond Res 27(8):2086–2095

    Article  PubMed  Google Scholar 

  • Moran D, Epstein Y, Keren G, Laor A, Sherez J, Shapiro Y (1995) Calculation of mean arterial pressure during exercise as a function of heart rate. Appl Human Sci 14(6):293–295

    CAS  PubMed  Google Scholar 

  • Osterberg KL, Horswill CA, Baker LB (2009) Pregame urine specific gravity and fluid intake by National Basketball Association players during competition. J Athl Train 44(1):53–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Peiffer JJ, Abbiss CR, Watson G, Nosaka K, Laursen PB (2010) Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. Br J Sports Med 44(6):461–465

    Article  CAS  PubMed  Google Scholar 

  • Proulx CI, Ducharme MB, Kenny GP (2003) Effect of water temperature on cooling efficiency during hyperthermia in humans. J Appl Physiol (1985) 94(4):1317–1323

    Article  CAS  Google Scholar 

  • Proulx CI, Ducharme MB, Kenny GP (2006) Safe cooling limits from exercise-induced hyperthermia. Eur J Appl Physiol 96(4):434–445

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan NL (1964) A new weighting system for mean surface temperature of the human body. J Appl Physiol 19:531–533

    CAS  PubMed  Google Scholar 

  • Stachenfeld NS, DiPietro L, Nadel ER, Mack GW (1997) Mechanism of attenuated thirst in aging: role of central volume receptors. Am J Physiol 272(1 Pt 2):R148–R157

    CAS  PubMed  Google Scholar 

  • Stover EA, Petrie HJ, Passe D, Horswill CA, Murray B, Wildman R (2006) Urine specific gravity in exercisers prior to physical training. Appl Physiol Nutr Metab 31(3):320–327

    Article  PubMed  Google Scholar 

  • Taylor NA, Tipton MJ, Kenny GP (2014) Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol 46:72–101

    Article  PubMed  Google Scholar 

  • Tipton MJ, Mekjavic IB, Eglin CM (2000) Permanence of the habituation of the initial responses to cold-water immersion in humans. Eur J Appl Physiol 83(1):17–21

    Article  CAS  PubMed  Google Scholar 

  • Tipton MJ, Wakabayashi H, Barwood MJ, Eglin CM, Mekjavic IB, Taylor NA (2013) Habituation of the metabolic and ventilatory responses to cold-water immersion in humans. J Therm Biol 38(1):24–31

    Article  PubMed  Google Scholar 

  • Versey NG, Halson SL, Dawson BT (2013) Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med 43(11):1101–1130

    Article  PubMed  Google Scholar 

  • Wada F, Sagawa S, Miki K, Nagaya K, Nakamitsu S, Shiraki K, Greenleaf JE (1995) Mechanism of thirst attenuation during head-out water immersion in men. Am J Physiol 268(3 Pt 2):R583–R589

    CAS  PubMed  Google Scholar 

  • Wilcock IM, Cronin JB, Hing WA (2006) Physiological response to water immersion: a method for sport recovery? Sports Med 36(9):747–765

    Article  PubMed  Google Scholar 

  • Zappe DH, Tankersley CG, Meister TG, Kenney WL (1993) Fluid restriction prior to cycle exercise: effects on plasma volume and plasma proteins. Med Sci Sports Exerc 25(11):1225–1230

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Davis JK, Casa DJ, Bishop PA (2015) Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc 47(11):2464–2472. doi:10.1249/MSS.0000000000000693

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cory L. Butts.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by George Havenith.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butts, C.L., Luhring, K.E., Smith, C.R. et al. Effects of mild hypohydration on cooling during cold-water immersion following exertional hyperthermia. Eur J Appl Physiol 116, 687–695 (2016). https://doi.org/10.1007/s00421-016-3329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3329-7

Keywords

Navigation