Skip to main content
Log in

Effect of 3-week high-intensity interval training on VO2max, total haemoglobin mass, plasma and blood volume in well-trained athletes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study examined the haematological adaptations to high-intensity interval training (HIT), i.e. total haemoglobin mass (tHb-mass), blood volume (BV), and plasma volume (PV), and its effects on VO2max in well-trained athletes.

Methods

Twenty-seven male and eight female well-trained (VO2max 63.7 ± 7.7 ml/min/kg) athletes were randomly assigned to the HIT (HITG, N = 19) or the control group (CG, N = 16). Over a 3-week period, the HITG performed 11 HIT sessions, consisting of four 4-min interval bouts at an exercise intensity of 90–95 % of the individual maximal heart rate (HRmax), separated by 4-min active recovery periods. Before and 5 ± 2 days after the intervention, tHb-mass, BV and PV were determined by the CO-rebreathing method. VO2max was assessed in a laboratory treadmill test.

Results

tHb-mass (from 753 ± 124 to 760 ± 121 g), BV (from 5.6 ± 0.8 to 5.6 ± 0.9 l) and PV (from 3.2 ± 0.5 to 3.2 ± 0.5 l) remained unchanged after HIT and did not show an interaction (group × time). Within the HITG, VO2max improved from baseline by +3.5 % (p = 0.011), but remained unchanged in the CG. No interaction (group × time) was seen for VO2max. The HITG showed a significant reduction in HRmax compared to the baseline measurement (−2.3 %, p ≤ 0.001), but HRmax remained unchanged in the CG. There was a significant interaction (group × time) for HRmax (p = 0.006). Also, oxygen pulse significantly increased only in HITG from 22.9 ± 4.4 to 23.9 ± 4.2 ml/beat, with no interaction (p = 0.150).

Conclusions

Eleven HIT sessions added to usual training did neither improve VO2max nor haematological parameters compared to the CG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

avDO2 :

Arterial–venous O2 content difference

BV:

Blood volume

CG:

Control group

CO:

Carbon monoxide

Hb:

Haemoglobin

Hct:

Haematocrit

HIT:

High-intensity interval training

HITG:

High-intensity interval training group

HR:

Heart rate

HRmax :

Maximal heart rate

O2-pulse:

Oxygen pulse

PV:

Plasma volume

Q:

Cardiac output

Qmax :

Maximal cardiac output

SV:

Stroke volume

tHb-mass:

Total haemoglobin mass

VO2max :

Maximal oxygen uptake

References

  • Astorino TA, Allen RP, Roberson DW, Jurancich M (2012) Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J Strength Cond Res 26(1):138–145. doi:10.1519/JSC.0b013e318218dd77

    Article  PubMed  Google Scholar 

  • Bonne TC, Doucende G, Flück D, Jacobs RA, Nordsborg NB, Robach P, Walther G, Lundby C (2014) Phlebotomy eliminates the maximal cardiac output response to six weeks of exercise training. Am J Physiol Regul Integr Comp Physiol 306(10):R752–R760. doi:10.1152/ajpregu.00028.2014

    Article  CAS  PubMed  Google Scholar 

  • Borg G (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  CAS  PubMed  Google Scholar 

  • Breil FA, Weber SN, Koller S, Hoppeler H, Vogt M (2010a) Block training periodization in alpine skiing: effects of 11-day HIT on VO2max and performance. Eur J Appl Physiol 109(6):1077–1086. doi:10.1007/s00421-010-1455-1

    Article  PubMed  Google Scholar 

  • Breil FA, Weber SN, Fontana P, Hoppeler H, Vogt M (2010b) Block periodization oh high intensity interval training (HIT): underlying adaptive mechanisms for the efficient VO2max improvement. In: Korkusuz F, Ertan H, Tsolakidis E (eds) Book of abstracts of the 15th annual congress of the European College of Sports Science, Antalya, Turkey, p 480

  • Burtscher M, Förster H, Burtscher J (2008) Superior endurance performance in aging mountain runners. Gerontology 54(5):268–271. doi:10.1159/000148649

    Article  CAS  PubMed  Google Scholar 

  • Burtscher M, Gatterer H, Faulhaber M, Gerstgrasser W, Schenk K (2010) Effects of intermittent hypoxia on running economy. Int J Sports Med 31(9):644–650. doi:10.1055/s-0030-1255067

    Article  CAS  PubMed  Google Scholar 

  • Convertino VA (1991) Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 23(12):1338–1348

  • Cunha FA, Midgley AW, Monteiro WD, Farinatti PT (2010) Influence of cardiopulmonary exercise testing protocol and resting VO2 assessment on %HRmax, %HRR, %VO2max and %VO2R relationships. Int J Sports Med 31(5):319–326. doi:10.1055/s-0030-1248283

    Article  CAS  PubMed  Google Scholar 

  • Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295(1):R264–R272. doi:10.1152/ajpregu.00875.2007

    Article  CAS  PubMed  Google Scholar 

  • Esfandiari S, Sasson Z, Goodman JM (2014) Short-term high-intensity interval and continuous moderate-intensity training improve maximal aerobic power and diastolic filling during exercise. Eur J Appl Physiol 114(2):331–343. doi:10.1007/s00421-013-2773-x

    Article  PubMed  Google Scholar 

  • Etxebarria N, Anson JM, Pyne DB, Ferguson RA (2014) High-intensity cycle interval training improves cycling and running performance in triathletes. Eur J Sport Sci 14(6):521–529. doi:10.1080/17461391.2013.853841

    Article  PubMed  Google Scholar 

  • Foster C, Florhaug JA, Franklin J, Gottschall L, Hrovatin LA, Parker S, Doleshal P, Dodge C (2001) A new approach to monitoring exercise training. J Strength Cond Res 15(1):109–115

    CAS  PubMed  Google Scholar 

  • Glass HI, Edwards RH, De Garreta AC, Clark JC (1969) 11CO red cell labeling blood volume and total hemoglobin in athletes: effect of training. J Appl Physiol 26(1):131–134

    CAS  PubMed  Google Scholar 

  • Gore CJ, Hahn AG, Burge CM, Telford RD (1997) VO2max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med 18(6):477–482

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Thomson JA, Ball ME, Hughson RL, Houston ME, Sharratt MT (1984) Alterations in blood volume following short-term supramaximal exercise. J Appl Physiol 56(1):145–149

    CAS  PubMed  Google Scholar 

  • Helgerud J, Høydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671. doi:10.1249/mss.0b013e3180304570

    Article  PubMed  Google Scholar 

  • Iaia M, Hellsten Y, Nielsen JJ, Fernström M, Sahlin K, Bangsbo J (2009) Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl Physiol (1985) 106(1):73–80. doi:10.1152/japplphysiol.90676.2008

    Article  Google Scholar 

  • Jacobs RA, Flück D, Bonne TC, Bürgi S, Christensen PM, Toigo M, Lundby C (2013) Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. J Appl Physiol (1985) 115(6):785–793. doi:10.1152/japplphysiol.00445.2013

    Article  Google Scholar 

  • Jensen L, Bangsbo J, Hellsten Y (2004) Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol 557(Pt2):571–582. doi:10.1113/jphysiol.2003.057711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiviniemi AM, Tulpo MP, Eskelinen JJ, Savolainen AM, Kapanen J, Heinonen ICH, Huikuri HV, Hannukainen JC, Kalliokoski KK (2014) Cardiac autonomic function and high-intensity interval training in middle-age men. Med Sci Sports Exerc 46(10):1960–1967. doi:10.1249/MSS.0000000000000307

    Article  PubMed  Google Scholar 

  • Krip B, Gledhill N, Jamnik V, Warburton D (1997) Effects of alterations in blood volume on cardiac function during maximal exercise. Med Sci Sports Exerc 29(11):1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG (2002) Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc 34(11):1801–1807

    Article  PubMed  Google Scholar 

  • Laursen PB, Shing CM, Peake JM, Coombes JS, Jenkins DG (2005) Influence of high-intensity interval training on adaptations in well-trained cyclists. J Strength Cond Res 19(3):527–533

    PubMed  Google Scholar 

  • McMillan K, Helgerud J, Macdonald R, Hoff J (2005) Physiological adaptations to soccer specific endurance training in professional youth soccer players. Br J Sports Med 39(5):273–277. doi:10.1136/bjsm.2004.012526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagashima K, Mack GW, Haskell A, Nishiyasu T, Nadel ER (1999) Mechanism for the posture-specific plasma volume increase after a single intense exercise protocol. J Appl Physiol (1985) 86(3):867–873

    CAS  Google Scholar 

  • Pottgiesser T, Schumacher YO (2013) Current strategies of blood doping detection. Anal Bioanal Chem 405(30):9625–9639. doi:10.1007/s00216-013-7270-x

    Article  CAS  PubMed  Google Scholar 

  • Richardson RS, Verstraete D, Johnson SC, Luetkemeier MJ, Stray-Gundersen J (1996) Evidence of a secondary hypervolemia in trained man following acute high intensity exercise. Int J Sports Med 17(4):243–247. doi:10.1055/s-2007-972840

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W, Prommer N (2005) The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol 95(5–6):486–495. doi:10.1007/s00421-005-0050-3

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W, Prommer N (2008) Effects of various training modalities on blood volume. Scan J Med Sci Sports 18:59–71. doi:10.1111/j.1600-0838.2008.00833.x

    Article  Google Scholar 

  • Schmidt W, Heinicke K, Rojas J, Manuel Gomez J, Serrato M, Mora M, Wolfarth B, Schmid A, Keul J (2002) Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med Sci Sports Exerc 34(12):1934–1940

    Article  CAS  PubMed  Google Scholar 

  • Steiner T, Wehrlin JP (2011) Does hemoglobin mass increase from age 16 to 21 and 28 in elite endurance athletes? Med Sci Sports Exerc 43(9):1735–1743. doi:10.1249/MSS.0b013e3182118760

    Article  CAS  PubMed  Google Scholar 

  • Wahl P, Jansen F, Achtzehn S, Schmitz T, Bloch W, Mester J, Werner N (2014) Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors. PLoS One 9(4):e96024. doi:10.1371/journal.pone.0096024

    Article  PubMed Central  PubMed  Google Scholar 

  • Warburton DE, Gledhill N, Jamnik VK, Krip B, Card N (1999) Induced hypervolemia, cardiac function, VO2max, and performance of elite cyclists. Med Sci Sports Exerc 31(6):800–808

    Article  CAS  PubMed  Google Scholar 

  • Warburton DE, Gledhill N, Quinney HA (2000) Blood volume, aerobic power, and endurance performance: potential ergogenic effect of volume loading. Clin J Sport Med 10(1):59–66

    Article  CAS  PubMed  Google Scholar 

  • Warburton DE, Haykowsky MJ, Quinney HA, Blackmore D, Teo KK, Taylor DA, McGavock J, Humen DP (2004) Blood volume expansion and cardiorespiratory function: effects of training modality. Med Sci Sports Exerc 36(6):991–1000

    Article  PubMed  Google Scholar 

  • Wassermann K, Whipp BJ, Koyal SN, Beaver WL (1973) Anaerobic threshold and respiratory gas-exchange during exercise. J Appl Physiol 35(2):236–243

    Google Scholar 

  • Zavorsky GS (2000) Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med 29(1):13–26. doi:10.2165/00007256-200029010-00002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the University of Innsbruck, Vice Rector for Research (“Doktoratsstipendium aus der Nachwuchsförderung”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Menz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Carsten Lundby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menz, V., Strobl, J., Faulhaber, M. et al. Effect of 3-week high-intensity interval training on VO2max, total haemoglobin mass, plasma and blood volume in well-trained athletes. Eur J Appl Physiol 115, 2349–2356 (2015). https://doi.org/10.1007/s00421-015-3211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3211-z

Keywords

Navigation