Skip to main content
Log in

A single set of exhaustive exercise before resistance training improves muscular performance in young men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to examine the effects of an additional set of exhaustive exercise before traditional hypertrophic training on quadriceps muscle performance in young men.

Methods

Subjects performed maximal dynamic strength (1RM), local muscular endurance (LME), and magnetic resonance imaging (MRI) tests before and after an 8-week hypertrophic training program using a knee extensor machine. After baseline testing, the subjects were divided into 3 groups: untrained control, traditional training (TR), and prior exhaustive training (PE). Both the TR and PE groups trained using the same training protocol (2 days week−1; 3 sets of 8–12 repetitions at 75 % of 1RM); the only difference was that the PE group performed an additional set of exhaustive exercise at 20 % of 1RM before each training session.

Results

After 8 weeks, the PE group experienced a greater (P < 0.05) increase in 1RM, cross-sectional area, and LME than the TR group. Additionally, no changes (P > 0.05) in daily dietary intake were observed between groups.

Conclusion

These results suggest that the inclusion of a single set of exhaustive exercise at 20 % of 1RM before traditional hypertrophic training can be a suitable strategy for inducing additional beneficial effects on quadriceps strength, hypertrophy, and endurance in young men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

1RM:

One repetition maximum

CSA:

Cross-sectional area

LME:

Local muscular endurance

MRI:

Magnetic resonance imaging

CV:

Coefficient of variation

RT:

Resistance training

EMG:

Electromyography

VL:

Vastus lateralis

SENIAM:

Surface EMG for Non-Invasive Assessment of Muscles

RMS:

Root mean square

BMI:

Body mass index

References

  • Abe T, Kearns CF, Sato Y (2006) Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 100:1460–1466

    Article  CAS  PubMed  Google Scholar 

  • American College of Sports Medicine (2009) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708

    Article  Google Scholar 

  • Aroniadou-Anderjaska V, Lemon PW, Gilloteaux J (1996) Effects of exogenous growth hormone on skeletal muscle of young female rats. Tissue Cell 28:719–724

    Article  CAS  PubMed  Google Scholar 

  • Baechle TR, Earle RW (2008) Resistance training and spotting techniques. In: Earle R, Baechle T (eds) Essentials of strength and conditioning: national strength and conditioning association, 3rd edn. Human Kinetics, Champaign, pp 326–376

    Google Scholar 

  • Bell GJ, Petersen SR, Wessel J, Bagnall K, Quinney HA (1991) Physiological adaptations to concurrent endurance training and low velocity resistance training. Int J Sports Med 12:384–390

    Article  CAS  PubMed  Google Scholar 

  • Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, Cashaback JG, Potvin JR, Baker SK, Phillips SM (2010a) Resistance exercise volume affects myofibrillar protein synthesis and anabolic signaling molecule phosphorylation in young men. J Physiol 588:3119–3130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Burd NA, West DW, Staples AW, Atherton PJ, Baker JM, Moore DR, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010b) Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5:e12033

    Article  PubMed Central  PubMed  Google Scholar 

  • Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF, Ragg KE, Ratamess NA, Kraemer WJ, Staron RS (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88:50–60

    Article  PubMed  Google Scholar 

  • Debold EP (2012) Recent insights into the molecular basis of muscular fatigue. Med Sci Sports Exerc 44:1440–1452

    Article  PubMed  Google Scholar 

  • Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, Smith K, Reitelseder S, Kappelgaard AM, Rasmussen MH, Flyvbjerg A, Kjaer M (2010) Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol 588:341–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M (2001) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 535:301–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol 108:1199–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goto K, Nagasawa M, Yanagisawa O, Kizuka T, Ishii N, Takamatsu K (2004) Muscular adaptations to combinations of high- and low-intensity resistance exercises. J Strength Cond Res 18:730–737

    PubMed  Google Scholar 

  • Gotshalk LA, Volek JS, Staron RS, Denegar CR, Hagerman FC, Kraemer WJ (2002) Creatine supplementation improves muscular performance in older men. Med Sci Sports Exerc 34:537–543

    Article  CAS  PubMed  Google Scholar 

  • Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45:255–263

    Article  CAS  PubMed  Google Scholar 

  • Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, Andersen JL, Aagaard P, Kjaer M (2008) Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol (1985) 105:1454–1461

    Article  CAS  Google Scholar 

  • Hubal MJ, Gordish-Dressman H, Thompson PD, Price TB, Hoffman EP, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Seip RL, Clarkson PM (2005) Variability in muscle size and strength gain after unilateral resistance training. Med Sci Sports Exerc 37:964–972

    Article  PubMed  Google Scholar 

  • Huczel HA, Clarke DH (1992) A comparison of strength and muscle endurance in strength-trained and untrained women. Eur J Appl Physiol 64:467–470

    Article  CAS  Google Scholar 

  • Hunter GR, McCarthy JP, Bamman MM (2004) Effects of resistance training on older adults. Sports Med 34:329–348

    Article  PubMed  Google Scholar 

  • Koopman R, Zorenc AH, Gransier RJ, Cameron-Smith D, van Loon LJ (2006) Increase in S6K1 phosphorylation in human skeletal muscle following resistance exercise occurs mainly in type II muscle fibers. Am J Physiol Endocrinol Metab 290:E1245–E1252

    Article  CAS  PubMed  Google Scholar 

  • Kosek DJ, Kim JS, Petrella JK, Cross JM, Bamman MM (2006) Efficacy of 3 days/week resistance training on myofiber hypertrophy and myogenic mechanisms in young vs. older adults. J Appl Physiol 101:531–544

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Ratamess NA, Fry AC, French DN (2006) Strength training: development and evaluation of methodology. In: Maud PJ, Foster C (eds) Physiological assessment of human fitness. Human Kinetics, Champaign

  • Krieger JW (2010) Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. J Strength Cond Res 24:1150–1159

    Article  PubMed  Google Scholar 

  • Loenneke JP, Wilson GJ, Wilson JM (2010) A mechanistic approach to blood flow occlusion. Int J Sports Med 31:1–4

    Article  CAS  PubMed  Google Scholar 

  • Loenneke JP, Fahs CA, Wilson JM, Bemben MG (2011) Blood flow restriction: the metabolite/volume threshold theory. Med Hypotheses 77:748–752

    Article  CAS  PubMed  Google Scholar 

  • Loenneke JP, Wilson JM, Marin PJ, Bemben MG (2012) Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol 112:1849–1859

    Article  PubMed  Google Scholar 

  • Maughan RJ, Watson JS, Weir J (1983) Strength and cross-sectional area of human skeletal muscle. J Physiol 338:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ (1996) Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol 81:2004–2012

    CAS  PubMed  Google Scholar 

  • Meyer RA (2006) Does blood flow restriction enhance hypertrophic signaling in skeletal muscle? J Appl Physiol 100:1443–1444

    Article  PubMed  Google Scholar 

  • Miller KJ, Garland SJ, Ivanova T, Ohtsuki T (1996) Motor-unit behavior in humans during fatiguing arm movements. J Neurophysiol 75:1629–1636

    CAS  PubMed  Google Scholar 

  • Mitchell CJ, Churchward-Venne TA, West DW, Burd NA, Breen L, Baker SK, Phillips SM (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) 113:71–77

    Article  CAS  PubMed Central  Google Scholar 

  • Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122

    CAS  PubMed  Google Scholar 

  • Moritani T, Sherman WM, Shibata M, Matsumoto T, Shinohara M (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64:552–556

    Article  CAS  PubMed  Google Scholar 

  • Paul AC, Rosenthal N (2002) Different modes of hypertrophy in skeletal muscle fibers. J Cell Biol 18(156):751–760

    Article  Google Scholar 

  • Phillips SM (2009) Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Appl Physiol Nutr Metab 34:403–410

    Article  CAS  PubMed  Google Scholar 

  • Rhea MR, Alvar BA, Burkett LN (2002) Single versus multiple sets for strength: a meta-analysis to address the controversy. Res Q Sport Exerc 73:485–488

    Article  Google Scholar 

  • Rhea MR, Alvar BA, Burkett LN, Ball SD (2003) A meta-analysis to determine the dose response for strength development. Med Sci Sports Exerc 35:456–464

    Article  PubMed  Google Scholar 

  • Ronnestad BR, Egeland W, Kvamme NH, Refsnes PE, Kadi F, Raastad T (2007) Dissimilar effects of one- and three-set strength training on strength and muscle mass gains in upper and lower body in untrained subjects. J Strength Cond Res 21:157–163

    Article  PubMed  Google Scholar 

  • Russell BD, Motlagh D, Ashley WW (2000) Form follows functions: how muscle shape is regulated by work. J Appl Physiol 88:1127–1132

    CAS  PubMed  Google Scholar 

  • Sale DG (1987) Influence of exercise and training on motor unit activation. Exerc Sport Sci Rev 15:95–151

    Article  CAS  PubMed  Google Scholar 

  • Sale DG, Jacobs I, MacDougall JD, Garner S (1990) Comparison of two regimens of concurrent strength and endurance training. Med Sci Sports Exerc 22:348–356

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld BJ (2010) The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24:2857–2872

    Article  PubMed  Google Scholar 

  • Schoenfeld BJ (2013) Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med 43:179–194

    Article  PubMed  Google Scholar 

  • Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol (1985) 102:368–373

    Article  CAS  Google Scholar 

  • Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM (2005) Short-term high- vs. low-velocity isokinetic lengthening training results in greater hypertrophy of the elbow flexors in young men. J Appl Physiol 98:1768–1776

    Article  PubMed  Google Scholar 

  • Sooneste H, Tanimoto M, Kakigi R, Saga N, Katamoto S (2013) Effects of training volume on strength and hypertrophy in young men. J Strength Cond Res 27:8–13

    Article  PubMed  Google Scholar 

  • Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Takahashi T, Omokawa M, Kinugawa S, Tsutsui H (2009) Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 106:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H (2010) Dose effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 108:1563–1567

    Article  PubMed  Google Scholar 

  • Sundberg CJ (1994) Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand Suppl 615:1–50

    CAS  PubMed  Google Scholar 

  • Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N (2000a) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 88:61–65

    CAS  PubMed  Google Scholar 

  • Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000b) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88:2097–2106

    CAS  PubMed  Google Scholar 

  • Takarada Y, Sato Y, Ishii N (2002) Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol 86:308–314

    Article  PubMed  Google Scholar 

  • Tannerstedt J, Apro W, Blomstrand E (2009) Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. J Appl Physiol 106:1412–1418

    Article  CAS  PubMed  Google Scholar 

  • Tesch PA (1987) Acute and long-term metabolic changes consequent to heavy-resistance exercise. Med Sci Sports Exerc 26:67–89

    Google Scholar 

  • West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, De Lisio M, Tang JE, Parise G, Rennie MJ, Baker SK, Phillips SM (2009) Resistance exercise induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587:5239–5247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Willardson JM (2007) The application of training to failure in periodized multiple-set resistance exercise programs. J Strength Cond Res 21:628–631

    PubMed  Google Scholar 

  • Wolfe BL, LeMura LM, Cole PJ (2004) Quantitative analysis of single- vs. multiple-set programs in resistance training. J Strength Cond Res 18:35–47

    PubMed  Google Scholar 

Download references

Conflict of interest

No conflicts of interest, financial, or otherwise, are declared by the author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreo Fernando Aguiar.

Additional information

Communicated by William J. Kraemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, A.F., Buzzachera, C.F., Pereira, R.M. et al. A single set of exhaustive exercise before resistance training improves muscular performance in young men. Eur J Appl Physiol 115, 1589–1599 (2015). https://doi.org/10.1007/s00421-015-3150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3150-8

Keywords

Navigation