Skip to main content
Log in

Non-invasive assessment of carotid PWV via accelerometric sensors: validation of a new device and comparison with established techniques

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Carotid pulse wave velocity (PWV) is considered as a surrogate marker for carotid stiffness and its assessment is increasingly being used in clinical practice. However, at the moment, its estimation needs specific equipment and a moderate level of technical expertise; moreover, it is based on a mathematical model. The aim of this study was to validate a new system for non-invasive and model-free carotid PWV assessment based on accelerometric sensors by comparison with currently used techniques.

Methods

Accelerometric PWV (accPWV) values were obtained in 97 volunteers free of cardiovascular disease (age 24–85 years) and compared with standard ultrasound-based carotid stiffness parameters, such as carotid PWV (cPWV), relative distension (relD) and distensibility coefficient (DC). Moreover, the comparison between accPWV measurements and carotid-femoral PWV (cfPWV) was performed.

Results

Accelerometric PWV evaluations showed a significant correlation with cPWV measurements (R = 0.67), relD values (R = 0.66) and DC assessments (R = 0.64). These values were also significantly correlated with cfPWV evaluations (R = 0.46). In addition, the first attempt success rate was equal to 76.8 %.

Conclusions

The accelerometric system allows a simple and quick local carotid stiffness evaluation and the values obtained with this system are significantly correlated with known carotid stiffness biomarkers. Therefore, the presented device could provide a concrete opportunity for an easy carotid stiffness evaluation even in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

accPWV:

Accelerometric PWV

BMI:

Body mass index

CI:

Confidence interval

cfPWV:

Carotid-femoral PWV

cPWV:

Carotid pulse wave velocity

DBP:

Diastolic blood pressure

DC:

Distensibility coefficient

DN:

Dicrotic notch

PP:

Pulse pressure

PTT:

Pulse transit time

PWV:

Pulse wave velocity

relD:

Relative distension

RF:

Radio-frequency

SBP:

Systolic blood pressure

SF:

Systolic foot

US:

Ultrasound

References

  • Barenbrock M, Kosh M, Jöster E, Kisters K, Rahn KH, Hausberg M (2002) Reduced arterial distensibility is a predictor of cardiovascular disease in patients after renal transplantation. J Hypertens 20:79–84

    Article  CAS  PubMed  Google Scholar 

  • Bianchini E, Bozec E, Gemignani V, Faita F, Giannarelli C, Ghiadoni L, Demi M, Boutouyrie P, Laurent S (2010) Assessment of carotid stiffness and intima-media thickness from ultrasound data: comparison between two methods. J Ultrasound Med 29:1169–1175

    PubMed  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  • Brands PJ, Hoeks AP, Willingers J, Willekes C, Reneman RS (1999) An integrated system for the non-invasive assessment of vessel wall and hemodynamic properties of large arteries by means of ultrasound. Eur J Ultrasound 9:257–266

    Article  CAS  PubMed  Google Scholar 

  • Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J (2006) Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Physiol Heart Circ Physiol 290(2):H878–H885

    Article  CAS  PubMed  Google Scholar 

  • Dijk JM, Algra A, van der Graaf Y, Grobbee DE, Bots ML, SMART study group (2005) Carotid stiffness and the risk of new vascular events in patients with manifest cardiovascular disease. The SMART study. Eur Heart J 26:1213–1220

    Article  PubMed  Google Scholar 

  • Giannarelli C, Bianchini E, Bruno RM, Magagna A, Landini L, Faita F, Gemignani V, Penno G, Taddei S, Ghiadoni L (2012) Local carotid stiffness and intima-media thickness assessment by a novel ultrasound-based system in essential hypertension. Atherosclerosis 223:372–377

    Article  CAS  PubMed  Google Scholar 

  • Giannattasio C, Salvi P, Valbusa F, Kearney-Schwartz A, Capra A, Amigoni M, Failla M, Boffi L, Madotto F, Benetos A, Mancia G (2008) Simultaneous measurement of beat-to-beat carotid diameter and pressure changes to assess arterial mechanical properties. Hypertension 52(5):896–902

    Article  CAS  PubMed  Google Scholar 

  • Hermeling E, Reesink KD, Kornmann LM, Reneman RS, Hoeks AP (2009) The dicrotic notch as alternative time-reference point to measure local pulse wave velocity in the carotid artery by means of ultrasonography. J Hypertens 27(10):2028–2035

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim el-SH, Johnson KR, Miller AB, Shaffer JM, White RD (2010) Measuring aortic pulse wave velocity using high-field cardiovascular magnetic resonance: comparison of techniques. J Cardiovasc Magn Reson 12(1):26

    Article  PubMed Central  Google Scholar 

  • Laurent S (2006) Arterial stiffness in arterial hypertension. Curr Hypertens Rep 8:179–180

    Article  PubMed  Google Scholar 

  • Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Laurent S, Katsahian S, Fassot C, Tropeano AI, Gautier I, Laloux B, Boutouyrie P (2003) Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 34:1203–1206

    Article  PubMed  Google Scholar 

  • Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H; European Network for Non-invasive Investigation of Large Arteries (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605

    Article  PubMed  Google Scholar 

  • Mancia G, De Backer G, Dominiczak A, Cifkova R, Fgard R, Germano G, Grassi G, Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder RE, Boudier HA, Zanchetti A, ESH-ESC Task Force on the Management of Arterial Hypertension (2007) 2007 ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension. J Hypertens 25:1751–1762

    Article  CAS  PubMed  Google Scholar 

  • Mattace-Raso FU, van der Cammen TJ, Hofman A, van Popele NM, Bos ML, Schalekamp MA, Asmar R, Reneman RS, Hoeks AP, Breteler MM, Wittemen JC (2006) Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam study. Circulation 113:657–663

    Article  PubMed  Google Scholar 

  • Németh ZK, Studinger P, Kiss I, Othmane Tel H, Nemcsik J, Fekete BC, Deàk G, Egresits J, Szathmàri M, Tislér A (2011) The method of distance measurement and torso length influences the relationship of pulse wave velocity to cardiovascular mortality. Am J Hypertens 24(2):155–161

    Article  PubMed  Google Scholar 

  • Oliver JJ, Webb DJ (2003) Non invasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol 23:554–556

    Article  CAS  PubMed  Google Scholar 

  • O’Rourke MF, Staessen JA, Vlachopoulos C, Duprez D, Plante GE (2002) Clinical applications of arterial stiffness: definitions and reference values. Am J Hypertens 15:426–444

    Article  PubMed  Google Scholar 

  • Paini A, Boutouyrie P, Calvet D, Tropeano AI, Laloux B, Laurent S (2006) Carotid and aortic stiffness: determinants and discrepancies. Hypertension 47:371–376

    Article  CAS  PubMed  Google Scholar 

  • Palombo C, Kozakova M, Guraschi N, Bini G, Cesana F, Castoldi G, Stella A, Morizzo C, Giannattasio C (2012) Radiofrequency-based carotid wall tracking: a comparison between two different systems. J Hypertens 30(8):1614–1619

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Tompkins WJ (1985) A real time QRS detection algorithm. IEEE Trans Biomed Eng 33(3):230–236

    Article  Google Scholar 

  • Pannier BM, Avolio AP, Hoeks A, Mancia G, Takazawa K (2002) Methods and devices for measuring arterial compliance in humans. AJH 15:743–753

    PubMed  Google Scholar 

  • Salvi P, Lio G, Labat C, Ricci E, Pannier B, Benetos A (2004) Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: the PulsePen device. J Hypertens 22:2285–2293

    Article  CAS  PubMed  Google Scholar 

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639

    Article  CAS  Google Scholar 

  • Selzer RH, Mack WJ, Lee PL, Kwong-Fu H, Hodis HN (2001) Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Atherosclerosis 154(1):185–193

    Article  CAS  PubMed  Google Scholar 

  • Tamin NSM, Ghani F (2010) Techniques for optimization in time delay estimation from cross correlation function. IJET-IJENS 10(2):49–54

    Google Scholar 

  • Vlachopoulos C, Aznaouridis K, Stefanidis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  PubMed  Google Scholar 

  • Westenberg JJ, van Poelgeest EP, Steendijk P, Grotenhuis HB, Jukema JW, de Roos A (2012) Bramwell–Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment. J Cardiovasc Magn Reson 14:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Whittaker ET, Robinson G (1967) The trapezoidal and parabolic rules. In: The calculus of observations: a treatise on numerical mathematics, 4th edn. Dover, New York, pp 156–158

  • Wilkinson IB, McEniery CM, Schillaci G, Boutouyrie P, Segers P, Donald A, Chowienczyk PJ, On behalf of the ARTERY Society (2010) ARTERY Society guidelines for validation of non-invasive hemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Research 4:34–40

    Article  Google Scholar 

Download references

Conflict of interest

Elisabetta Bianchini, Francesco Faita, Vincenzo Gemignani and Lorenzo Ghiadoni are co-founders and councillors of QUIPU s.r.l., Pisa, ITALY, a spin-off company of the National Research Council and the University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Di Lascio.

Additional information

Communicated by Guido Ferretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Lascio, N., Bruno, R.M., Stea, F. et al. Non-invasive assessment of carotid PWV via accelerometric sensors: validation of a new device and comparison with established techniques. Eur J Appl Physiol 114, 1503–1512 (2014). https://doi.org/10.1007/s00421-014-2881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2881-2

Keywords

Navigation