Skip to main content
Log in

Effect of age and combined sprint and strength training on plasma catecholamine responses to a Wingate-test

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this research is to study the effects of aging and combined training (sprint and strength) on catecholamine responses [adrenaline (A) and noradrenaline (NA)].

Methods

Thirty-two male subjects voluntarily participated in this study. They were randomly divided into four groups: A young trained group (age 21.4 ± 1.2 years, YT, n = 8), a young control group (age 21.9 ± 1.9 years, YC, n = 8), a middle-aged trained group (age 40.8 ± 2.8 years, AT, n = 8) and a middle-aged control group (age 40.4 ± 2.0 years, AC, n = 8). YT and AT participated in a high intensity sprint and strength training program (HISST) for 13 weeks. All the participants realized the Wingate-test before (P1) and after (P2) HISST. Plasma A and NA concentrations were determined at rest (A 0, NA0) and at the end of exercise (A max, NAmax).

Results

At P1, a significant difference (p < 0.05) in terms of age was observed for NA0 and A 0 between YT and AT and between control groups YC and AC. This age effect disappeared after training when compared YT and AT. After HISST, A max increased significantly (p < 0.05) in YT and AT (from 3.08 ± 0.17 to 3.23 ± 0.34 nmol l−1 in YT and from 3.23 ± 0.52 to 4.59 ± 0.10 nmol l−1 in AT). However, NAmax increased significantly (p < 0.05) in AT only (from 3.34 ± 0.31 to 3.75 ± 0.60 nmol l−1). A max was highly increased in AT compared to YT (4.59 ± 0.10 vs. 3.23 ± 0.34 nmol l−1), respectively.

Conclusion

The combined training (sprint and strength) appeared to reduce the age effect of the catecholamine response both at rest and in response to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

A:

Adrenaline

AC:

Aged control

A max :

Adrenaline concentration at the end of Wingate-test

A max/NAmax :

Catecholamine ratio at the end of Wingate-test

A 0 :

Adrenaline concentration at rest

A 0/NA0 :

Catecholamine ratio at rest

A w :

Adrenaline concentration after warm-up

A 10 :

Adrenaline concentration at 10 min of recovery

AT:

Aged training

DIA:

Disappearance of adrenaline

DINA:

Disappearance of noradrenaline

D1:

Day 1

D2:

Day 2

D3:

Day 3

FFM:

Fat free mass

HISST:

High intensity sprint and strength training

HPLC:

High-performance liquid chromatography

HR:

Heart rate

[La]:

Lactate concentration

[La]peak :

Maximal lactate concentration

NA:

Noradrenaline

NA0 :

Noradrenaline concentration at rest

NAw :

Noradrenaline concentration after warm-up

NAmax :

Noradrenaline concentration at the end of Wingate-test

NA10 :

Noradrenaline concentration at 10 min of recovery

P1:

Before training

P2:

After training

VO2max :

Maximal oxygen consumption

WT:

Wingate-test

W peak (W):

Maximal power in absolute value

W peak (W kg−1):

Maximal power related to body mass

W peak (W kg FFM−1):

Maximal power related to FFM

W mean :

Mean power in absolute value

W mean (W kg−1):

Mean power related to body mass

W mean (W kg FFM−1):

Mean power related to FFM

YT:

Young training

YC:

Young control

References

  • Ahtiainen JP, Pakarinen A, Alen M et al (2005) Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. J Strength Cond Res 19:572–582

    PubMed  Google Scholar 

  • Aniansson A, Grimby G, Hedberg M (1992) Compensatory muscle fiber hypertrophy in elderly men. J Appl Physiol 73:812–816

    PubMed  CAS  Google Scholar 

  • Benelli P, Ditroilo M, Forte R et al (2007) Assessment of post competition peak blood lactate in male and female master swimmers aged 40–79 years and its relationship with swimming performance. Eur J Appl Physiol 99:685–693

    Article  PubMed  Google Scholar 

  • Botcazou M, Zouhal H, Jacob C et al (2006) Effect of training and detraining on catecholamine responses to sprint exercise in adolescent girls. Eur J Appl Physiol 97:68–75

    Article  PubMed  CAS  Google Scholar 

  • Braken RM, Brooks S (2010) Plasma catecholamine and nephrine responses following 7 weeks of sprint cycle training. Amino Acids 38:1351–1359

    Article  CAS  Google Scholar 

  • Ciccarelli M, Santulli G, Pascale V et al (2013) Adrenergic receptors and metabolism: role in development of cardiovascular disease. Front Physiol 4:265

    Article  PubMed Central  PubMed  Google Scholar 

  • Ciccotti L (2007) La validation des acquis de l’expérience: le module de formation incompressible et obligatoire, vol 2. Heures de France, pp 75

  • Cristea A, Korhonen MT, Häkkinen K et al (2008) Effects of combined strength and sprint training on regulation of muscle contraction at the whole-muscle and single fiber levels in elite master sprinters. Acta Physiol 193:275–289

    Article  CAS  Google Scholar 

  • Derbre F, Vincent S, Maitel B et al (2010) Androgen responses to sprint exercise in young men. Int J Sports Med 31:291–297

    Article  PubMed  CAS  Google Scholar 

  • Durnin JV, Womersley J (1974) Body fat assessed from total density and its estimation from skinfold thickness: measurement in 481 men and women aged from 16 to 72 years. Br J Nutr 37:77–97

    Article  Google Scholar 

  • Fatouros IG, Kambas A, Katrabasas I et al (2005) Strength training and detraining effects on muscular strength, anaerobic power, and mobility of inactive older men are intensity dependent. Br J Sports Med 39:776–780

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frontera WR, Meredith CN, O’Reilly KP et al (1990) Strength training and determinants of VO2max in older men. J Appl Physiol 68:329–333

    PubMed  CAS  Google Scholar 

  • Galbo H (1983) Hormonal and metabolic adaptation to exercise. Thieme, Stuttgart, pp 1–116

    Google Scholar 

  • Guezennec CY, Giaoui M, Voignier JP et al (1986) Evolution of plasma levels of LDH (lactate dehydrogenase), CPK (creatine phosphokinase) and myoglobin at the end of a 100 km race and a triathlon. Sci Sports 1:255–263

    Article  CAS  Google Scholar 

  • Hanoune J (1990) The adrenal medulla. In: Baulieu E–E, Kelly PA (eds) Molecules: from molecules to disease. VII. Hermann Chapman and Hall, Paris, pp 308–333

    Google Scholar 

  • Harrison AJ, Bourke G (2009) The effect of resisted sprint training on speed and strength performance in male rugby players. J Strength Cond Res 23:275–283

    Article  PubMed  Google Scholar 

  • Hill DW (1999) Energy system contributions in middle-distance running events. J Sports Sci 17:477–483

    Article  PubMed  CAS  Google Scholar 

  • Jacob C, Zouhal H, Prioux J et al (2004) Effect of the intensity of training on catecholamine responses to supramaximal exercise in endurance-trained men. Eur J Appl Physiol Occup Physiol 91:35–40

    Article  CAS  Google Scholar 

  • Kjaer M (1998) Adrenal medulla and exercise training. Eur J Appl Physiol 77:195–199

    Article  CAS  Google Scholar 

  • Kjaer M, Farrell PA, Christensen NJ et al (1986) Increased epinephrine response and inaccurate glycoregulation in exercising athletes. J Appl Physiol 61:1693–1700

    PubMed  CAS  Google Scholar 

  • Kjær M, Secher NH, Galbo H (1987) Physical stress and catecholamine release. Neuroendocrinol Stress 1:279–298

    Google Scholar 

  • Kraemer WJ (1988) Endocrine responses to resistance exercise. Med Sci Sports Exerc 20:152–157

    Article  Google Scholar 

  • Kraemer WJ, Hakkinen K (2002) Strength Training for Sport. Blackwell Science, Oxford

    Google Scholar 

  • Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Patton JF, Gordon SE et al (1995) Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol 78:976–989

    PubMed  CAS  Google Scholar 

  • Kraemer WJ, Fleck SJ, Maresh CM et al (1999) Acute hormonal responses to a single bout of heavy resistance exercise in trained power lifters and untrained men. Can J Appl Physiol 24:524–537

    Article  PubMed  CAS  Google Scholar 

  • Kreisman SH, Ah Mew N, Halter JB et al (2001) Norepinephrine infusion during moderate-intensity exercise increases glucose production and uptake. J Clin Endoerinol Metab 86:2118–2124

    CAS  Google Scholar 

  • Lacour JR, Bouvat E, Barthelemy JC (1990) Post-competition blood lactate concentrations as indicators of anaerobic energy expenditure during 400-m and 800-m races. Eur J Appl Physiol Occup Physiol 61:172–176

    Article  PubMed  CAS  Google Scholar 

  • Laursen PB, Shing CM, Peake JM et al (2002) Interval training program optimization in highly trained endurance cyclists. Med Sci Sports Exerc 34:1801–1807

    Article  PubMed  Google Scholar 

  • Laverty R (1978) Catecholamines: role in health and disease. Drugs 16(5):418–440

    Article  PubMed  CAS  Google Scholar 

  • Lehmann M, Dickhuth HH, Schmid P et al (1984) Plasma catecholamines, b-adrenergic receptors, and isoprotenerol sensitivity in endurance trained and non-endurance trained volunteers. Eur J Appl Physiol 52:362–369

    Article  CAS  Google Scholar 

  • Manettaa J, Bruna JF, Prefauta C et al (2005) Substrate oxidation during exercise at moderate and hard intensity in middle-aged and young athletes vs. sedentary men. Metabolism 54:1411–1419

    Article  CAS  Google Scholar 

  • Marker JC, Arnall DA, Conlee RK et al (1986) Effect of adrenodemedullation on metabolic responses to high-intensity exercise. Am J Physiol 251:552–559

    Google Scholar 

  • Mazzeo RS (1991) Catecholamine responses to acute and chronic exercise. Med Sci Sports Exerc 23:839–845

    Article  PubMed  CAS  Google Scholar 

  • Mikulski T, Ziemba A, Nazar K (2008) Influence of body carbohydrate store modification on catecholamine and lactate responses to graded exercise in sedentary and physically active subjects. J Physiol Pharmacol 59:603–616

    PubMed  CAS  Google Scholar 

  • Nevill ME, Boobis LH, Brooks S et al (1989) Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 67:2376–2382

    PubMed  CAS  Google Scholar 

  • Ohkuwa T, Kato Y, Katusmata K et al (1984a) Blood lactate and glycerol after 400 m and 3000 m runs in sprint and long distance runners. Eur Appl Physiol 53:213–218

    Article  CAS  Google Scholar 

  • Ohkuwa T, Kato Y, Katusmata K et al (1984b) Blood lactate and glycerol after 400 m and 3000 m runs in sprint and long distance runners. Eur J Appl Physiol 53:213–218

    Article  CAS  Google Scholar 

  • Podolin DA, Munger PA, Mazzeo RS (1991) Plasma catecholamine and lactate response during graded exercise with varied glycogen conditions. J Appl Physiol 71:1427–1433

    PubMed  CAS  Google Scholar 

  • Poole JG, Lawrenson L, Kim J et al (2003) Vascular and metabolic response to cycle exercise in sedentary humans: effect of age. Am J Physiol Heart Circ Physiol 284:H1251–H1259

    PubMed  CAS  Google Scholar 

  • Proctor DN, Newcomer SC, Koch DW et al (2003) Leg blood flow during submaximal cycle ergometry is not reduced in healthy older normally active men. J Appl Physiol 94:1859–1869

    PubMed  Google Scholar 

  • Reaburn PRJ (1993) The lifetime athlete: Physical work capacities and skeletal muscle characteristics. Unpublished PhD thesis. The University of Queensland, Australia

  • Richter EA, Sonne B, Christensen NJ et al (1981) Role of epinepbrine for muscular glycogenoiysis and pancreatic hormonal secretion in running rats. Am J Physiol 240:526–532

    Google Scholar 

  • Rieu M (1986) Lactatémie et exercice musculaire. Signification et analyse critique du concept de “seuil aérobie-anaérobie”. Sci Sports 1:1–23

    Article  CAS  Google Scholar 

  • Rodriguez RM, Gonzalez-Alonso J, Below PR et al (1996) Plasma Catecholamines and hyperglycemia influence thermoregulation in man during prolonged exercise in the heat. J Physiol 491:529–540

    Google Scholar 

  • Schneider DA, McLellan TM, Gass GC (2000) Plasma catecholamine and blood lactate responses to incremental arm and leg exercise. Med Sci Sports Exerc 32:608–613

    Article  PubMed  CAS  Google Scholar 

  • Siciliano G, Renna M, Manca ML et al (1999) The relationship of plasma catecholamine and lactate during anaerobic threshold exercise in mitochondrial myopathies. Neuromuscul Disord 9:411–416

    Article  PubMed  CAS  Google Scholar 

  • Siff MC (2003). Supertraining. Supertraining Institute

  • Silverman HG, Mazzeo RS (1996) Hormonal Responses to Maximal and Submaximal Exercise in Trained and Untrained Men of Various Ages. J Gerontol A Biol Sci Med Sci 51:B30–B37

    Article  PubMed  CAS  Google Scholar 

  • Strobel G, Friedmann B, Siebold R et al (1999) Effect of severe exercise on plasma catecholamines in differently trained athletes. Med Sci Sports Exerc 31:560–565

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Irizawa M, Komura T et al (1995) Relationship among blood lactate and plasma catecholamine levels during exercise in acute hypoxia. Appl Human Sci 14:49–53

    PubMed  CAS  Google Scholar 

  • Taysi S, Oztasan N, Efe H et al (2008) Endurance training attenuates the oxidative stress due to acute exhaustive exercise in rat liver. Acta Physiol Hung 95(4):337–347

    Article  PubMed  CAS  Google Scholar 

  • Tesch PA, Larsson L (1982) Muscle hypertrophy in bodybuilders. Eur J Appl Physiol 49:301–306

    Article  CAS  Google Scholar 

  • Wahren J, Saltin B, Jorfeldt L et al (1974) Influence of age on the local circulatory adaptation to leg exercise. Scand J Clin Lab Invest 33:79–86

    Article  PubMed  CAS  Google Scholar 

  • Ziegler M, Lake C, Kopin I (1976) Deficient sympathetic nervous response in familial Dysautonomia. N Engl J Med 294:630–633

    Article  PubMed  CAS  Google Scholar 

  • Zouhal H, Rannou F, Gratas-Delamarche A et al (1998) Adrenal medulla responsiveness to the sympathetic nervous activity in sprinters and untrained-subjects during a supramaximal exercise. Int J Sports Med 19:1–5

    Article  Google Scholar 

  • Zouhal H, Gratas-Delamarche A, Rannou F et al (1999) Between 21 and 34 years of age, aging alters the catecholamine responses to supramaximal exercise in endurance trained athletes. Int J Sports Med 20:343–348

    Article  PubMed  CAS  Google Scholar 

  • Zouhal H, Jacob C, Rannou F et al (2001) Effect of training status on the sympathoadrenal activity during a supramaximal exercise in human. J Sports Med Phys Fitness 41:330–336

    PubMed  CAS  Google Scholar 

  • Zouhal H, Jacob C, Delamarche P et al (2008) Catecholamines and the effects of exercise, training and gender. Sports Med 38:401–423

    Article  PubMed  Google Scholar 

  • Zouhal H, Lemoine S, Mathieu ME et al (2013) Catecholamines and obesity: effects of exercise and training. Sports Med 43:591–600

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the study participants for their cooperation, the medical team, coaches and experts.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Zouhal.

Additional information

Communicated by Jean-René Lacour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellami, M., Abderrahman, A.B., Casazza, G.A. et al. Effect of age and combined sprint and strength training on plasma catecholamine responses to a Wingate-test. Eur J Appl Physiol 114, 969–982 (2014). https://doi.org/10.1007/s00421-014-2828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-014-2828-7

Keywords

Navigation