Skip to main content
Log in

Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study aimed to use the intermittent critical velocity (ICV) model to individualize intermittent exercise and analyze whether a fast-start strategy could increase the time spent at or above 95 %VO2max (t95VO2max) during intermittent exercise. After an incremental test, seven active male subjects performed three intermittent exercise tests until exhaustion at 100, 110, and 120 % of the maximal aerobic velocity to determine ICV. On three occasions, the subjects performed an intermittent exercise test until exhaustion at 105 % (IE105) and 125 % (IE125) of ICV, and at a speed that was initially set at 125 %ICV but which then decreased to 105 %ICV (IE125–105). The intermittent exercise consisted of repeated 30-s runs alternated with 15-s passive rest intervals. There was no difference between the predicted and actual Tlim for IE125 (300 ± 72 s and 284 ± 76 s) and IE105 (1,438 ± 423 s and 1,439 ± 518 s), but for IE125–105 the predicted Tlim underestimated the actual Tlim (888 ± 211 s and 1,051 ± 153 s, respectively). The t95VO2max during IE125–105 (289 ± 150 s) was significantly higher than IE125 (113 ± 40 s) and IE105 (106 ± 71 s), but no significant differences were found between IE125 and IE105. It can be concluded that predicting Tlim from the ICV model was affected by the fast-start protocol during intermittent exercise. Furthermore, fast-start protocol was able to increase the time spent at or above 95 %VO2max during intermittent exercise above ICV despite a longer total exercise time at IE105.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CP:

Critical power

CV:

Critical velocity

Dlim:

Total distance covered

HRmax:

Maximal heart rate

IE105 :

Intermittent exercise at 105 %ICV

IE125 :

Intermittent exercise at 105 %ICV

IE125–105 :

Intermittent exercise that began at 125 %ICV and decreased to 105 %ICV

ICV:

Intermittent critical velocity

[La]max :

Maximal blood lactate concentration

MAV:

Maximal aerobic velocity

t95VO2max :

Time spent at or above 95 %VO2max

Tlim:

Time to exhaustion

TotO2 :

Total amount of oxygen consumed

VO2 :

Oxygen uptake

VO2max :

Maximal oxygen uptake

VO2peak :

Peak oxygen uptake

W′:

Finite energy reserve

References

  • Bailey SJ, Vanhatalo A, DiMenna FJ, Wilkerson DP, Jones AM (2011) Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc 43(3):457–467

    Article  PubMed  Google Scholar 

  • Bearden SE, Moffatt RJ (2001) VO2 and heart rate kinetics in cycling: transitions from an elevated baseline. J Appl Physiol 90(6):2081–2087

    PubMed  CAS  Google Scholar 

  • Berthoin S, Baquet G, Dupont G, Van Praagh E (2006) Critical velocity during continuous and intermittent exercises in children. Eur J Appl Physiol 98(2):132–138

    Article  PubMed  Google Scholar 

  • Billat VL, Blondel N, Berthoin S (1999) Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol Occup Physiol 80(2):159–161

    Article  PubMed  CAS  Google Scholar 

  • Billat VL, Morton RH, Blondel N, Berthoin S, Bocquet V, Koralsztein JP, Barstow TJ (2000a) Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol 82(3):178–187

    Article  PubMed  CAS  Google Scholar 

  • Billat VL, Slawinski J, Bocquet V, Demarle A, Lafitte L, Chassaing P, Koralsztein JP (2000b) Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 81(3):188–196

    Article  PubMed  CAS  Google Scholar 

  • Billat VL, Slawinksi J, Bocquet V, Chassaing P, Demarle A, Koralsztein JP (2001) Very short (15 s–15 s) interval-training around the critical velocity allows middle-aged runners to maintain VO2max for 14 minutes. Int J Sports Med 22(3):201–208

    Article  PubMed  CAS  Google Scholar 

  • Brandon LJ (1995) Physiological factors associated with middle distance running performance. Sports Med 19(4):268–277

    Article  PubMed  CAS  Google Scholar 

  • Buchheit M, Laursen PB, Millet GP, Pactat F, Ahmaidi S (2008) Predicting intermittent running performance: critical velocity versus endurance index. Int J Sports Med 29(4):307–315

    Article  PubMed  CAS  Google Scholar 

  • Burnley M, Davison G, Baker JR (2011) Effects of priming exercise on VO2 kinetics and the power-duration relationship. Med Sci Sports Exerc 43(11):2171–2179

    Article  PubMed  Google Scholar 

  • Caputo F, Denadai BS (2004) Effects of aerobic endurance training status and specificity on oxygen uptake kinetics during maximal exercise. Eur J Appl Physiol 93(1–2):87–95

    Article  PubMed  CAS  Google Scholar 

  • Chidnok W, Dimenna FJ, Bailey SJ, Vanhatalo A, Morton RH, Wilkerson DP, Jones AM (2012) Exercise tolerance in intermittent cycling: application of the critical power concept. Med Sci Sports Exerc 44(5):966–976

    Article  PubMed  Google Scholar 

  • Creer AR, Ricard MD, Conlee RK, Hoyt GL, Parcell AC (2004) Neural, metabolic, and performance adaptations to four weeks of high intensity sprint-interval training in trained cyclists. Int J Sports Med 25(2):92–98

    Article  PubMed  CAS  Google Scholar 

  • Demarie S, Koralsztein JP, Billat V (2000) Time limit and time at VO2max during a continuous and an intermittent run. J Sports Med Phys Fitness 40(2):96–102

    PubMed  CAS  Google Scholar 

  • Denadai BS, Ortiz MJ, Greco CC, de Mello MT (2006) Interval training at 95 % and 100 % of the velocity at VO2max: effects on aerobic physiological indexes and running performance. Appl Physiol Nutr Metab 31(6):737–743

    Article  PubMed  Google Scholar 

  • DiMenna FJ, Wilkerson DP, Burnley M, Jones AM (2008) Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline. J Appl Physiol 105(2):538–546

    Article  PubMed  Google Scholar 

  • Dupont G, Blondel N, Lensel G, Berthoin S (2002) Critical velocity and time spent at a high level of VO2 for short intermittent runs at supramaximal velocities. Can J Appl Physiol 27(2):103–115

    Article  PubMed  Google Scholar 

  • Fukuba Y, Miura A, Endo M, Kan A, Yanagawa K, Whipp BJ (2003) The curvature constant parameter of the power-duration curve for varied-power exercise. Med Sci Sports Exerc 35(8):1413–1418

    Article  PubMed  Google Scholar 

  • Fukuda DH, Smith AE, Kendall KL, Cramer JT, Stout JR (2011) The determination of critical rest interval from the intermittent critical velocity test in club-level collegiate hockey and rugby players. J Strength Cond Res 25(4):889–895

    PubMed  Google Scholar 

  • Fukuda DH, Smith AE, Kendall KL, Hetrick RP, Hames RL, Cramer JT, Stout JR (2012) The reliability of the intermittent critical velocity test and assessment of critical rest interval in men and women. Eur J Appl Physiol 112(4):1197–1205

    Google Scholar 

  • Gaesser GA (1994) Influence of endurance training and catecholamines on exercise VO2 response. Med Sci Sports Exerc 26(11):1341–1346

    PubMed  CAS  Google Scholar 

  • Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31(10):725–741

    Article  PubMed  CAS  Google Scholar 

  • Gerbino A, Ward SA, Whipp BJ (1996) Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol 80(1):99–107

    PubMed  CAS  Google Scholar 

  • Hill DW (1993) The critical power concept. A review. Sports Med 16(4):237–254

    Article  PubMed  CAS  Google Scholar 

  • Hill DW, Ferguson CS (1999) A physiological description of critical velocity. Eur J Appl Physiol Occup Physiol 79(3):290–293

    Article  PubMed  CAS  Google Scholar 

  • Housh DJ, Housh TJ, Bauge SM (1989) The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics 32(8):997–1004

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Wilkerson DP, Vanhatalo A, Burnley M (2008) Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports 18(5):615–626

    Article  PubMed  CAS  Google Scholar 

  • Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC (2010) Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc 42(10):1876–1890

    Article  PubMed  Google Scholar 

  • Midgley AW, Mc Naughton LR (2006) Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness 46(1):1–14

    Google Scholar 

  • Midgley AW, McNaughton LR, Wilkinson M (2006) Is there an optimal training intensity for enhancing the maximal oxygen uptake of distance runners? Empirical research findings, current opinions, physiological rationale and practical recommendations. Sports Med 36(2):117–132

    Article  PubMed  Google Scholar 

  • Midgley AW, McNaughton LR, Carroll S (2007a) Time at VO2max during intermittent treadmill running: test protocol dependent or methodological artefact? Int J Sports Med 28(11):934–939

    Article  PubMed  CAS  Google Scholar 

  • Midgley AW, McNaughton LR, Jones AM (2007b) Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med 37(10):857–880

    Article  PubMed  Google Scholar 

  • Millet GP, Candau R, Fattori P, Bignet F, Varray A (2003a) VO2 responses to different intermittent runs at velocity associated with VO2max. Can J Appl Physiol 28(3):410–423

    Article  PubMed  Google Scholar 

  • Millet GP, Libicz S, Borrani F, Fattori P, Bignet F, Candau R (2003b) Effects of increased intensity of intermittent training in runners with differing VO2 kinetics. Eur J Appl Physiol 90(1–2):50–57

    Article  PubMed  CAS  Google Scholar 

  • Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB (2011) Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J Appl Physiol 110(6):1598–1606

    Article  PubMed  Google Scholar 

  • Okuno NM, Perandini LA, Bishop D, Simoes HG, Pereira G, Berthoin S, Kokubun E, Nakamura FY (2011) Physiological and perceived exertion responses at intermittent critical power and intermittent maximal lactate steady state. J Strength Cond Res 25(7):2053–2058

    Article  PubMed  Google Scholar 

  • Pepper ML, Housh TJ, Johnson GO (1992) The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med 13(2):121–124

    Article  PubMed  CAS  Google Scholar 

  • Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31(9):1265–1279

    Article  PubMed  CAS  Google Scholar 

  • Robinson DM, Robinson SM, Hume PA, Hopkins WG (1991) Training intensity of elite male distance runners. Med Sci Sports Exerc 23(9):1078–1082

    PubMed  CAS  Google Scholar 

  • Soares-Caldeira LF, Okuno NM, Magalhaes Sales M, Campbell CS, Simoes HG, Nakamura FY (2012) Similarity in physiological and perceived exertion responses to exercise at continuous and intermittent critical power. Eur J Appl Physiol 112(5):1637–1644

    Google Scholar 

  • Wakefield BR, Glaister M (2009) Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. J Strength Cond Res 23(9):2548–2554

    Article  PubMed  Google Scholar 

  • Wenger HA, Bell GJ (1986) The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med 3(5):346–356

    Article  PubMed  CAS  Google Scholar 

  • Wilkerson DP, Koppo K, Barstow TJ, Jones AM (2004) Effect of prior multiple-sprint exercise on pulmonary O2 uptake kinetics following the onset of perimaximal exercise. J Appl Physiol 97(4):1227–1236

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the subjects for participation in this study, and CNPq for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caputo.

Additional information

Communicated by David C. Poole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Aguiar, R.A., Turnes, T., de Oliveira Cruz, R.S. et al. Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise. Eur J Appl Physiol 113, 941–949 (2013). https://doi.org/10.1007/s00421-012-2508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2508-4

Keywords

Navigation