Skip to main content

Advertisement

Log in

Different responses of selected hormones to three types of exercise in young men

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Exercise is a potent stimulus for release of growth hormone (GH), cortisol, testosterone and prolactin, and prolonged exercise inhibits insulin secretion. These responses seem to be specific to the type of exercise but this has been poorly characterised primarily because they have not been compared during exercise performed by the same individuals. We investigated hormone responses to resistance, sprint and endurance exercise in young men using a repeated measures design in which each subject served as their own control. Eight healthy non-obese young adults (18–25 years) were studied on four occasions in random order: 30-s cycle ergometer sprint (Sprint), 30-min resistance exercise bout (Resistance), 30-min cycle at 70 % VO2max (Endurance), and seated rest in the laboratory (Rest). Cortisol, GH, testosterone, prolactin, insulin and glucose concentrations were measured for 60 min after the four different interventions. Endurance and sprint exercise significantly increased GH, cortisol, prolactin and testosterone. Sprint exercise also increased insulin concentrations, whereas this decreased in response to endurance exercise. Resistance exercise significantly increased only testosterone and glucose. Sprint exercise elicited the largest response per unit of work, but the smallest response relative to mean work rate in all hormones. In conclusion, the nature and magnitude of the hormone response were influenced by exercise type, perhaps reflecting the roles of these hormones in regulating metabolism during and after resistance, sprint and endurance exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bartlett JD, Close GL, MacLaren DPM, Gregson W, Drust B, Morton JP (2011) High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci 29(6):547–553. doi:10.1080/02640414.2010.545427

    Article  PubMed  Google Scholar 

  • Betts JA, Beelen M, Stokes KA, Saris WHM, van Loon LJC (2011) Endocrine responses during overnight recovery from exercise: impact of nutrition and relationships with muscle protein synthesis. Int J Sport Nutr Exerc Metab 21(5):398–409

    PubMed  CAS  Google Scholar 

  • Brandenberger G, Follenius M (1975) Influence of timing and intensity of muscular exercise on temporal patterns of plasma cortisol levels. J Clin Endocrinol Metab 40(5):845–849

    Article  PubMed  CAS  Google Scholar 

  • Breen L, Philp A, Shaw CS, Jeukendrup AE, Baar K, Tipton KD (2011) Beneficial effects of resistance exercise on glycemic control are not further improved by protein ingestion. PLoS One 6 (6). doi:10.1371/journal.pone.0020613

  • Bussau VA, Ferreira LD, Jones TW, Fournier PA (2007) A 10-s sprint performed prior to moderate-intensity exercise prevents early post-exercise fall in glycaemia in individuals with type 1 diabetes. Diabetologia 50(9):1815–1818. doi:10.1007/s00125-007-0727-8

    Article  PubMed  CAS  Google Scholar 

  • Chief Medical Officers of England W, Scotland, Northern Ireland (2011) Start active, stay active: a report on physical activity from the four home countries’ Chief Medical Officers. doi:http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_128209

  • Consitt LA, Bloomer RJ, Wideman L (2007) The effect of exercise type on immunofunctional and traditional growth hormone. Eur J Appl Physiol 100(3):321–330. doi:10.1007/s00421-007-0431-x

    Article  PubMed  CAS  Google Scholar 

  • Crewther BT, Cook C, Cardinale M, Weatherby RP, Lowe T (2011) Two emerging concepts for elite athletes the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Med 41(2):103–123. doi:10.2165/11539170-000000000-00000

    Article  PubMed  Google Scholar 

  • Davis HA, Gass GC, Bassett JR (1981) Serum cortisol response to incremental work in experienced and naive subjects. Psychosom Med 43(2):127–132

    PubMed  CAS  Google Scholar 

  • Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, Smith K, Reitelseder S, Kappelgaard AM, Rasmussen MH, Flyvbjerg A, Kjaer M (2010) Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol (Lond) 588(2):341–351. doi:10.1113/jphysiol.2009.179325

    Article  CAS  Google Scholar 

  • Felsing NE, Brasel JA, Cooper DM (1992) Effect of low and high-intensity exercise on circulating growth-hormone in men. J Clin Endocrinol Metab 75(1):157–162

    Article  PubMed  CAS  Google Scholar 

  • Few JD (1974) Effect of exercise on secretion and metabolism of cortisol in man. J Endocrinol 62(2):341–353

    Article  PubMed  CAS  Google Scholar 

  • Galbo H (1985) The hormonal response to exercise. Proc Nutr Soc 44(2):257–266

    Article  PubMed  CAS  Google Scholar 

  • Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP, Amer Coll Sports M (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7):1334–1359. doi:10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  • Gilbert KL, Stokes KA, Hall GM, Thompson D (2008) Growth hormone responses to 3 different exercise bouts in 18-to 25-and 40-to 50-year-old men. Appl Physiol Nutr Metab 33(4):706–712. doi:10.1139/h08-034

    Article  PubMed  CAS  Google Scholar 

  • Guiraud T, Nigam A, Juneau M, Meyer P, Gayda M, Bosquet L (2011) Acute responses to high-intensity intermittent exercise in CHD patients. Med Sci Sports Exerc 43(2):211–217. doi:10.1249/MSS.0b013e3181ebc5de

    Article  PubMed  Google Scholar 

  • Hakkinen K, Pakarinen A (1995) Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med 16(8):507–513

    Article  PubMed  CAS  Google Scholar 

  • Kindermann W, Schnabel A, Schmitt WM, Biro G, Cassens J, Weber F (1982) Catecholamines, growth-hormone, cortisol, insulin, and sex-hormones in anaerobic and aerobic exercise. Eur J Appl Physiol Occ Med 49(3):389–399

    Article  CAS  Google Scholar 

  • Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35(4):339–361

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ (1990) Hormonal and growth-factor responses to heavy resistance exercise protocols. J Appl Physiol 69(4):1442–1450

    PubMed  CAS  Google Scholar 

  • Kraemer WJ, Gordon SE, Fleck SJ, Marchitelli LJ, Mello R, Dziados JE, Friedl K, Harman E, Maresh C, Fry AC (1991) Endogenous anabolic hormonal and growth-factor responses to heavy resistance exercise in males and females. Int J Sports Med 12(2):228–235

    Article  PubMed  CAS  Google Scholar 

  • Kraemer WJ, Hakkinen K, Newton RU, Nindl BC, Volek JS, McCormick M, Gotshalk LA, Gordon SE, Fleck SJ, Campbell WW, Putukian M, Evans WJ (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87(3):982–992

    PubMed  CAS  Google Scholar 

  • McCall GE, Byrnes WC, Fleck SJ, Dickinson A, Kraemer WJ (1999) Acute and chronic hormonal responses to resistance training designed to promote muscle hypertrophy. Can J Appl Physiol 24(1):96–107

    Article  PubMed  CAS  Google Scholar 

  • Pritzlaff CJ, Wideman L, Weltman JY, Abbott RD, Gutgesell ME, Hartman ML, Veldhuis JD, Weltman A (1999) Impact of acute exercise intensity on pulsatile growth hormone release in men. J Appl Physiol 87(2):498–504

    PubMed  CAS  Google Scholar 

  • Pritzlaff CJ, Wideman L, Blumer J, Jensen M, Abbott RD, Gaesser GA, Veldhuis JD, Weltman A (2000) Catecholamine release, growth hormone secretion, and energy expenditure during exercise vs. recovery in men. J Appl Physiol 89(3):937–946

    PubMed  CAS  Google Scholar 

  • Richards JC, Johnson TK, Kuzma JN, Lonac MC, Schweder MM, Voyles WF, Bell C (2010) Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to beta-adrenergic stimulation. J Physiol (Lond) 588(15):2961–2972. doi:10.1113/jphysiol.2010.189886

    Article  CAS  Google Scholar 

  • Rojas Vega S, Hollmann W, Struder HK (2012) Influences of exercise and training on the circulating concentration of prolactin in humans. J Neuroendocrinol 24(3):395–402. doi:10.1111/j.1365-2826.2011.02266.x

    Article  PubMed  CAS  Google Scholar 

  • Stokes K (2003) Growth hormone responses to sub-maximal and sprint exercise. Growth Horm IGF Res 13(5):225–238

    Article  PubMed  CAS  Google Scholar 

  • Stokes KA, Nevill ME, Hall GM, Lakomy HKA (2002) Growth hormone responses to repeated maximal cycle ergometer exercise at different pedaling rates. J Appl Physiol 92(2):602–608

    PubMed  CAS  Google Scholar 

  • Stokes KA, Tyler C, Gilbert KL (2008) The growth hormone response to repeated bouts of sprint exercise with and without suppression of lipolysis in men. J Appl Physiol 104(3):724–728. doi:10.1152/japplphysiol.00534.2007

    Article  PubMed  CAS  Google Scholar 

  • Wahl P, Zinner C, Achtzehn S, Bloch W, Mester J (2010) Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm IGF Res 20(5):380–385. doi:10.1016/j.ghir.2010.08.001

    Article  PubMed  CAS  Google Scholar 

  • Wasserman DH, Cherrington AD (1991) Hepatic fuel metabolism during muscular work: role and regulation. Am J Physiol 260(6):E811–E824

    PubMed  CAS  Google Scholar 

  • West DWD, Burd NA, Tang JE, Moore DR, Staples AW, Holwerda AM, Baker SK, Phillips SM (2010) Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol 108(1):60–67. doi:10.1152/japplphysiol.01147.2009

    Article  PubMed  Google Scholar 

  • Whyte LJ, Gill JMR, Cathcart AJ (2010) Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabol Clin Exp 59(10):1421–1428. doi:10.1016/j.metabol.2010.01.002

    Article  CAS  Google Scholar 

  • Yarrow JF, Borsa PA, Borst SE, Sitren HS, Stevens BR, White LJ (2007) Neuroendocrine responses to an acute bout of eccentric-enhanced resistance exercise. Med Sci Sports Exerc 39(6):941–947. doi:10.1097/mss.0b013e318043a249

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Concept-2 for the loan of the DYNO resistance exercise machine used in this study.

Conflict of interest

The authors do not have any conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Stokes.

Additional information

Communicated by Fabio Fischetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stokes, K.A., Gilbert, K.L., Hall, G.M. et al. Different responses of selected hormones to three types of exercise in young men. Eur J Appl Physiol 113, 775–783 (2013). https://doi.org/10.1007/s00421-012-2487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2487-5

Keywords

Navigation