Skip to main content
Log in

Walking promotes metabolic and baroreflex sensitivity improvement in fructose-fed male rats

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate metabolic and cardiovascular responses to walking in fructose-fed rats. Male Wistar rats were divided into control (C), sedentary fructose (SF) and walking fructose (WF). Fructose-fed rats received d-fructose (100 g/l). WF rats walked on a treadmill at constant load (0.3 km/h) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, adipose tissue and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BR) was evaluated by the reflex tachycardia (TR) and bradycardia (BR) to AP changes. The results showed that walking decreased the adipose tissue (SF: 6.5 ± 0.4; WF: 2.8 ± 0.1; C: 3.0 ± 0.3 g), blood triglyceride levels (SF: 291 ± 6.5; WF: 150 ± 8.1; C: 103 ± 4.5 mg/dl) and increased insulin sensitivity (SF: 2.5 ± 0.2; WF: 3.3 ± 0.32; C: 4.8 ± 0.4 %/min). Baroreflex sensitivity was improved in the WF group expressed by BR (SF: 0.75 ± 0.10; WF: 1.18 ± 0.10; C: 1.5 ± 0.14 ms/mmHg) and TR (SF: 0.80 ± 0.12; WF: 1.21 ± 0.10; C: 1.35 ± 0.11 ms/mmHg), as well as when verified by the alpha index. Although the WF group showed decreased AP when compared with the SF group, the values still enhanced in relation to C rats (SF: 137 ± 2; WF: 129 ± 1; C: 115 ± 6 mmHg). Our findings allow a better understanding of the effects of walking, a low-intensity exercise training, on the hemodynamic and metabolic aspects of male rats with metabolic syndrome and indicate that walking seems to be particularly effective in treating metabolic disturbances in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bertagnolli M, Schenkel PC, Campos C, Mostarda CT, Casarini DE, Bello-Klein A, Irigoyen MC, Rigatto K (2008) Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats. Am J Hypertens 21(11):1188–1193

    Article  PubMed  CAS  Google Scholar 

  • Bonora E, Moghetti P, Zancanaro C, Cigolini M, Querena M, Cacciatori V, Corgnati A, Muggeo M (1989) Estimates of in vivo insulin action in man: comparison of insulin tolerance tests with euglycemic and hyperglycemic glucose clamp studies. J Clin Endocrinol Metab 68(2):374-378

    Article  PubMed  CAS  Google Scholar 

  • Botezelli JD, Mora RF, Dalia RA, Moura LP, Cambri LT, Ghezzi AC, Voltarelli FA, Mello MA (2010) Exercise counteracts fatty liver disease in rats fed on fructose-rich diet. Lipids Health Dis 9:116

    Article  PubMed  Google Scholar 

  • Brito JO, Ponciano K, Figueroa D, Bernardes N, Sanches IC, Irigoyen MC, De Angelis K (2008) Parasympathetic dysfunction is associated with insulin resistance in fructose-fed female rats. Braz J Med Biol Res 41(9):804–808

    Article  PubMed  CAS  Google Scholar 

  • Brooks GA, White TP (1978) Determination of metabolic and heart rate responses of rats to treadmill exercise. J Appl Physiol 45(6):1009–1015

    PubMed  CAS  Google Scholar 

  • Brum PC, Da Silva GJ, Moreira ED, Ida F, Negrao CE, Krieger EM (2000) Exercise training increases baroreceptor gain sensitivity in normal and hypertensive rats. Hypertension 36(6):1018–1022

    Article  PubMed  CAS  Google Scholar 

  • Cambri LT, de Araujo GG, Ghezzi AC, Botezelli JD, Mello MA (2011) Metabolic responses to acute physical exercise in young rats recovered from fetal protein malnutrition with a fructose-rich diet. Lipids Health Dis 10:164

    Article  PubMed  CAS  Google Scholar 

  • Chen HI, Liao YL (1998) Effects of chronic exercise on muscarinic receptor-mediated vasodilation in rats. Chin J Physiol 41(3):161–166

    PubMed  CAS  Google Scholar 

  • Cunha TS, Farah V, Paulini J, Pazzine M, Elased KM, Marcondes FK, Claudia Irigoyen M, De Angelis K, Mirkin LD, Morris M (2007) Relationship between renal and cardiovascular changes in a murine model of glucose intolerance. Regul Pept 139:1–3

    Google Scholar 

  • De Angelis Lobo d’Avila K, Gadonski G, Fang J, Dall’Ago P, Albuquerque VL, Peixoto LR, Fernandes TG, Irigoyen MC et al (1999) Exercise reverses peripheral insulin resistance in trained l-NAME-hypertensive rats. Hypertension 34(4 Pt 2):768–772

    PubMed  Google Scholar 

  • De Angelis KL, Oliveira AR, Werner A, Bock P, Bello-Klein A, Fernandes TG, Bello AA, Irigoyen MC (1997) Exercise training in aging: hemodynamic, metabolic, and oxidative stress evaluations. Hypertension 30(3 Pt 2):767–771

    Article  PubMed  Google Scholar 

  • De Angelis K, da Pureza DY, Flores LJ, Rodrigues B, Melo KF, Schaan BD, Irigoyen MC (2006) Physiological effects of exercise training in patients with type 1 diabetes. Arq Bras Endocrinol Metabol 50(6):1005–1013

    Article  PubMed  Google Scholar 

  • De Angelis K, Irigoyen MC, Morris M (2009) Diabetes and cardiovascular autonomic dysfunction: application of animal models. Auton Neurosci 145(1–2):3–10

    Article  PubMed  Google Scholar 

  • De Angelis K, Senador DD, Mostarda CT, Irigoyen MC, Morris M (2012) Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice. Am J Physiol Regul Integr Comp Physiol

  • Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76(5):911–922

    PubMed  CAS  Google Scholar 

  • Farah V, Elased KM, Chen Y, Key MP, Cunha TS, Irigoyen MC, Morris M (2006) Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 130(1–2):41–50

    Article  PubMed  CAS  Google Scholar 

  • Farah V, Elased KM, Morris M (2007) Genetic and dietary interactions: role of angiotensin AT1a receptors in response to a high-fructose diet. Am J Physiol Heart Circ Physiol 293(2):H1083–H1089

    Article  PubMed  CAS  Google Scholar 

  • Favret F, Henderson KK, Clancy RL, Richalet JP, Gonzalez NC (2001) Exercise training alters the effect of chronic hypoxia on myocardial adrenergic and muscarinic receptor number. J Appl Physiol 91(3):1283–1288

    PubMed  CAS  Google Scholar 

  • Ford ES, Giles WH (2003) A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care 26(3):575–581

    Article  PubMed  Google Scholar 

  • Galipeau D, Verma S, McNeill JH (2002) Female rats are protected against fructose-induced changes in metabolism and blood pressure. Am J Physiol Heart Circ Physiol 283(6):H2478–H2484

    PubMed  CAS  Google Scholar 

  • Grundy SM, Adams-Huet B, Vega GL (2008) Variable contributions of fat content and distribution to metabolic syndrome risk factors. Metab Syndr Relat Disord 6(4):281–288

    Article  PubMed  CAS  Google Scholar 

  • Gustat J, Elkasabany A, Srinivasan S, Berenson GS (2000) Relation of abdominal height to cardiovascular risk factors in young adults: the Bogalusa Heart Study. Am J Epidemiol 151(9):885–891

    Article  PubMed  CAS  Google Scholar 

  • Hallfrisch J, Lazar F, Jorgensen C, Reiser S (1979) Insulin and glucose responses in rats fed sucrose or starch. Am J Clin Nutr 32(4):787–793

    PubMed  CAS  Google Scholar 

  • Haram PM, Kemi OJ, Lee SJ, Bendheim MO, Al-Share QY, Waldum HL, Gilligan LJ, Koch LG, Britton SL, Najjar SM, Wisloff U (2009) Aerobic interval training vs. continuous moderate exercise in the metabolic syndrome of rats artificially selected for low aerobic capacity. Cardiovasc Res 81(4):723–732

    Article  PubMed  CAS  Google Scholar 

  • Harati M, Ani M (2004) Vanadyl sulfate ameliorates insulin resistance and restores plasma dehydroepiandrosterone-sulfate levels in fructose-fed, insulin-resistant rats. Clin Biochem 37(8):694–697

    Article  PubMed  CAS  Google Scholar 

  • Harthmann AD, De Angelis K, Costa LP, Senador D, Schaan BD, Krieger EM, Irigoyen MC (2007) Exercise training improves arterial baro- and chemoreflex in control and diabetic rats. Auton Neurosci 133(2):115–120

    Article  PubMed  Google Scholar 

  • Huggett RJ, Burns J, Mackintosh AF, Mary DA (2004) Sympathetic neural activation in nondiabetic metabolic syndrome and its further augmentation by hypertension. Hypertension 44(6):847–852

    Article  PubMed  CAS  Google Scholar 

  • Irigoyen MC, Paulini J, Flores LJ, Flues K, Bertagnolli M, Moreira ED, Consolim-Colombo F, Bello-Klein A, De Angelis K (2005) Exercise training improves baroreflex sensitivity associated with oxidative stress reduction in ovariectomized rats. Hypertension 46(4):998–1003

    Article  PubMed  CAS  Google Scholar 

  • Joseph LJ, Prigeon RL, Blumenthal JB, Ryan AS, Goldberg AP (2011) Weight loss and low-intensity exercise for the treatment of metabolic syndrome in obese postmenopausal women. J Gerontol A Biol Sci Med Sci 66(9):1022–1029

    Article  PubMed  Google Scholar 

  • Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288(21):2709–2716

    Article  PubMed  Google Scholar 

  • Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, Krieger EM, Negrao CE, Rondon MU (2007) Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension 49(6):1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Moraes-Silva IC, De La Fuente RN, Mostarda C, Rosa K, Flues K, Damaceno-Rodrigues NR, Caldini EG, De Angelis K, Krieger EM, Irigoyen MC (2010) Baroreflex deficit blunts exercise training-induced cardiovascular and autonomic adaptations in hypertensive rats. Clin Exp Pharmacol Physiol 37(3):e114–e120

    Article  PubMed  CAS  Google Scholar 

  • Mostarda C, Rogow A, Silva IC, De La Fuente RN, Jorge L, Rodrigues B, Heeren MV, Caldini EG, De Angelis K, Irigoyen MC (2009) Benefits of exercise training in diabetic rats persist after three weeks of detraining. Auton Neurosci 145(1–2):11–16

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Tuttle KR, Short RA, Johnson RJ (2005) Hypothesis: fructose-induced hyperuricemia as a causal mechanism for the epidemic of the metabolic syndrome. Nat Clin Pract Nephrol 1(2):80–86

    Article  PubMed  CAS  Google Scholar 

  • NCEP (2001) Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285(19):2486–2497

    Article  Google Scholar 

  • Pagani M, Somers V, Furlan R, Dell’Orto S, Conway J, Baselli G, Cerutti S, Sleight P, Malliani A (1988) Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 12(6):600–610

    Article  PubMed  CAS  Google Scholar 

  • Paulino EC, Ferreira JC, Bechara LR, Tsutsui JM, Mathias W Jr, Lima FB, Casarini DE, Cicogna AC, Brum PC, Negrao CE (2010) Exercise training and caloric restriction prevent reduction in cardiac Ca2+-handling protein profile in obese rats. Hypertension 56(4):629–635

    Article  PubMed  CAS  Google Scholar 

  • Potteiger JA, Claytor RP, Hulver MW, Hughes MR, Carper MJ, Richmond S, Thyfault JP (2011) Resistance exercise and aerobic exercise when paired with dietary energy restriction both reduce the clinical components of metabolic syndrome in previously physically inactive males. Eur J Appl Physiol [Epub ahead of print]

  • Ran XW, Li XS, Tong NW, Li QF, Tang BD, Li XJ (2004) Body fat distribution: its characteristics and relationship to cardiovascular risk factors in obese Chinese. Sichuan Da Xue Xue Bao Yi Xue Ban 35(5):699–703

    PubMed  CAS  Google Scholar 

  • Reiser S, Hallfrisch J (1977) Insulin sensitivity and adipose tissue weight of rats fed starch or sucrose diets ad libitum or in meals. J Nutr 107(1):147–155

    PubMed  CAS  Google Scholar 

  • Sanches IC, de Oliveira Brito J, Candido GO, da Silva Dias D, Jorge L, Irigoyen MC, De Angelis K (2011) Cardiometabolic benefits of exercise training in an experimental model of metabolic syndrome and menopause. Menopause [Epub ahead of print]

  • Schaan BD, Silva AM, Irigoyen MC (2010) Endothelial dysfunction in diabetes mellitus and insulin resistance states: role of oxidative stress and potential therapeutic opportunities. Arq Bras Endocrinol Metabol 54(6):514–515

    Article  PubMed  Google Scholar 

  • Scomparin DX, Grassiolli S, Gomes RM, Torrezan R, de Oliveira JC, Gravena C, Pera CC, Mathias PC (2011) Low-intensity swimming training after weaning improves glucose and lipid homeostasis in MSG hypothalamic obese mice. Endocr Res 36(2):83–90

    Article  PubMed  CAS  Google Scholar 

  • Silva RJ, Bernardes N, Brito Jde O, Sanches IC, Irigoyen MC, De Angelis K (2011) Simvastatin-induced cardiac autonomic control improvement in fructose-fed female rats. Clinics (Sao Paulo) 66(10):1793–1796

    Google Scholar 

  • Song D, Arikawa E, Galipeau D, Battell M, McNeill JH (2004) Androgens are necessary for the development of fructose-induced hypertension. Hypertension 43(3):667–672

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Nomura C, Odaka H, Ikeda H (1997) Effect of an insulin sensitizer, pioglitazone, on hypertension in fructose-drinking rats. Jpn J Pharmacol 74(4):297–302

    Article  PubMed  CAS  Google Scholar 

  • Tappy L, Le KA, Tran C, Paquot N (2010) Fructose and metabolic diseases: new findings, new questions. Nutrition 26(11–12):1044–1049

    Article  PubMed  CAS  Google Scholar 

  • Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332(1–2):145–159

    Article  PubMed  CAS  Google Scholar 

  • Veras-Silva AS, Mattos KC, Gava NS, Brum PC, Negrao CE, Krieger EM (1997) Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol 273(6 Pt 2):H2627–H2631

    PubMed  CAS  Google Scholar 

  • Whelton SP, Chin A, Xin X, He J (2002) Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 136(7):493–503

    PubMed  Google Scholar 

  • Wichi RB, De Angelis K, Jones L, Irigoyen MC (2009) A brief review of chronic exercise intervention to prevent autonomic nervous system changes during the aging process. Clinics (Sao Paulo) 64(3):253–258

    Article  Google Scholar 

  • Yoshida K, Kawamura T, Xu HL, Ji L, Mori N, Kohzuki M (2003) Effects of exercise training on glomerular structure in fructose-fed spontaneously hypertensive rats. Hypertens Res 26(11):907–914

    Article  PubMed  CAS  Google Scholar 

  • Zamo FS, Lacchini S, Mostarda C, Chiavegatto S, Silva IC, Oliveira EM, Irigoyen MC (2010) Hemodynamic, morphometric and autonomic patterns in hypertensive rats—renin-angiotensin system modulation. Clinics (Sao Paulo) 65(1):85–92

    Article  Google Scholar 

  • Zavaroni I, Sander S, Scott S, Reaven GM (1980) Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism 29(10):970–973

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 08/51525-8, 07/57595-5) and Conselho Nacional de Pesquisa (CNPq 482520/2009-4, 306011/2010-7). MCI and kDa are recipients of CNPq-BPQ fellowships.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cláudia Irigoyen.

Additional information

Communicated by Massimo Pagani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machi, J.F., Bernardes, N., Mostarda, C. et al. Walking promotes metabolic and baroreflex sensitivity improvement in fructose-fed male rats. Eur J Appl Physiol 113, 41–49 (2013). https://doi.org/10.1007/s00421-012-2411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2411-z

Keywords

Navigation