Skip to main content
Log in

Effect of dehydroepiandrosterone administration on recovery from mix-type exercise training-induced muscle damage

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This study aimed to determine the role of DHEA-S in coping against the exercise training mixing aerobic and resistance components. During 5-day successive exercise training, 16 young male participants (19.2 ± 1.2 years) received either a placebo (flour capsule) or DHEA (100 mg/day) in a double-blinded and placebo-controlled design. Oral DHEA supplementation significantly increased circulating DHEA-S by 2.5-fold, but a protracted drop (~35 %) was observed from Day 3 during training. In the Placebo group, only a minimal DHEA-S reduction (~17 %) was observed. Changes in testosterone followed a similar pattern as DHEA-S. Muscle soreness was elevated significantly on Day 2 for both groups to a similar extent. Lower muscle soreness was observed in the DHEA-supplemented group on Day 3 and Day 6. In the Placebo group, training increased circulating creatine kinase (CK) levels by approximately ninefold, while only a threefold increase was observed in the DHEA-supplemented group. This mix-type exercise training improved glucose tolerance in both groups, while lowering the insulin response to the glucose challenge, but no difference between treatments was observed. Our results suggest that DHEA-S may play a role in protecting skeletal muscle from exercise training-induced muscle damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aoi W, Naito Y, Takanami Y, Kawai Y, Sakuma K, Ichikawa H, Yoshida N, Yoshikawa T (2004) Oxidative stress and delayed-onset muscle damage after exercise. Free Radic Biol Med 37:480–487

    Article  PubMed  CAS  Google Scholar 

  • Aragno M, Parola S, Brignardello E, Mauro A, Tamagno E, Manti R, Danni O, Boccuzzi G (2000) Dehydroepiandrosterone prevents oxidative injury induced by transient ischemia/reperfusion in the brain of diabetic rats. Diabetes 49:1924–1931

    Article  PubMed  CAS  Google Scholar 

  • Ashton W, Degnan B, Daniel A, Francis G (1995) Testosterone increases insulin-like growth factor-1 and insulin-like growth factor-binding protein. Ann Clin Lab Sci 25:381–388

    PubMed  CAS  Google Scholar 

  • Asp S, Rohde T, Richter EA (1997) Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content. J Appl Physiol 83:1482–1485

    PubMed  CAS  Google Scholar 

  • Bastianetto S, Ramassamy C, Poirier J, Quirion R (1999) Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res 66:35–41

    Article  PubMed  CAS  Google Scholar 

  • Bouchard C, Tremblay A, Leblanc C, Lortie G, Savard R, Theriault G (1983) A method to assess energy expenditure in children and adults. Am J Clin Nutr 37:461–467

    PubMed  CAS  Google Scholar 

  • Brignardello E, Runzo C, Aragno M, Catalano MG, Cassader M, Perin PC, Boccuzzi G (2007) Dehydroepiandrosterone administration counteracts oxidative imbalance and advanced glycation end product formation in type 2 diabetic patients. Diabetes Care 30:2922–2927

    Article  PubMed  CAS  Google Scholar 

  • Byrnes WC, Clarkson PM, White JS, Hsieh SS, Frykman PN, Maughan RJ (1985) Delayed onset muscle soreness following repeated bouts of downhill running. J Appl Physiol 59:710–715

    PubMed  CAS  Google Scholar 

  • Ceci R, Duranti G, Rossi A, Savini I, Sabatini S (2011) Skeletal muscle differentiation: role of dehydroepiandrosterone sulfate. Horm Metab Res 43:702–707

    Article  PubMed  CAS  Google Scholar 

  • Clarkson P, Nosaka K, Braun B (1992) Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 24:512–520

    PubMed  CAS  Google Scholar 

  • Corrigan B (2002) DHEA and sport. Clin J Sport Med 12:236–241

    Article  PubMed  Google Scholar 

  • Costill DL, Pascoe DD, Fink WJ, Robergs RA, Barr SI, Pearson D (1990) Impaired muscle glycogen resynthesis after eccentric exercise. J Appl Physiol 69:46–50

    PubMed  CAS  Google Scholar 

  • Cumming D, Brunsting L, Strich G, Ries A, Rebar R (1986) Reproductive hormone increases in response to acute exercise in men. Med Sci Sports Exerc 18:369–373

    PubMed  CAS  Google Scholar 

  • Davis JM, Murphy EA, Carmichael MD, Zielinski MR, Groschwitz CM, Brown AS, Gangemi JD, Ghaffar A, Mayer EP (2007) Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol 292:R2168–R2173

    Article  PubMed  CAS  Google Scholar 

  • Diamond P, Brisson G, Candas B, Peronnet F (1989) Trait anxiety, submaximal physical exercise and blood androgens. Eur J Appl Physiol Occup Physiol 58:699–704

    Article  PubMed  CAS  Google Scholar 

  • Evans WJ (2000) Vitamin E, vitamin C, and exercise. Am J Clin Nutr 72:647S–652S

    PubMed  CAS  Google Scholar 

  • Flann KL, LaStayo PC, McClain DA, Hazel M, Lindstedt SL (2011) Muscle damage and muscle remodeling: no pain, no gain? J Exp Biol 214:674–679

    Article  PubMed  Google Scholar 

  • Fluckey JD, Vary TC, Jefferson LS, Evans WJ, Farrell PA (1996) Insulin stimulation of protein synthesis in rat skeletal muscle following resistance exercise is maintained with advancing age. J Gerontol A Biol Sci Med Sci 51A:B323–B330

    Article  CAS  Google Scholar 

  • Fluckey JD, Knox M, Smith L, Dupont-Versteegden EE, Gaddy D, Tesch PA, Peterson CA (2006) Insulin-facilitated increase of muscle protein synthesis after resistance exercise involves a MAP kinase pathway. Am J Physiol Endocrinol Metab 290:E1205–E1211

    Article  PubMed  CAS  Google Scholar 

  • Gant N, Hutchinson H, Siiteri P, MacDonald P (1971) Study of the metabolic clearance rate of dehydroisoandrosterone sulfate in pregnancy. Am J Obstet Gynecol 111:555–563

    PubMed  CAS  Google Scholar 

  • Hackney AC, Sharp RL, Runyan WS, Ness RJ (1989) Relationship of resting prolactin and testosterone in males during intensive training. Br J Sports Med 23:194

    Article  PubMed  CAS  Google Scholar 

  • Hardin D, Azzarelli B, Edwards J, Wigglesworth J, Maianu L, Brechtel G, Johnson A, Baron A, Garvey W (1995) Mechanisms of enhanced insulin sensitivity in endurance-trained athletes: effects on blood flow and differential expression of GLUT 4 in skeletal muscles. J Clin Endocrinol Metab 80:2437–2446

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO (2005) Exercise-induced increase in muscle insulin sensitivity. J Appl Physiol 99:338–343

    Article  PubMed  CAS  Google Scholar 

  • Ivy J, Kuo C (1998) Regulation of GLUT4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiol Scand 162:295–304

    Article  PubMed  CAS  Google Scholar 

  • Jakubowicz D, Beer N, Rengifo R (1995) Effect of dehydroepiandrosterone on cyclic-guanosine monophosphate in men of advancing age. Ann N Y Acad Sci 774:312–315

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Tanaka S-i, Yamada Y, Kiuchi Y, Yamakawa T, Sekihara H (1998) Dehydroepiandrosterone decreases serum tumor necrosis factor-{alpha} and restores insulin sensitivity: independent effect from secondary weight reduction in genetically obese Zucker fatty rats. Endocrinology 139:3249–3253

    Article  PubMed  CAS  Google Scholar 

  • Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Fragala MS, Watson G, Volek JS, Rubin MR, French DN, Maresh CM, Vingren JL, Hatfield DL, Spiering BA, Ho JY, Hughes SL, Case HS, Stuempfle KJ, Lehmann DR, Bailey S, Evans DS (2008) Hormonal responses to a 160-km race across frozen Alaska. Br J Sports Med 42:116–120

    Article  PubMed  CAS  Google Scholar 

  • Kroboth P, Salek F, Pittenger A, Fabian T, Frye R (1999) DHEA and DHEA-S: a review. J Clin Pharmacol 39:327–348

    Article  PubMed  CAS  Google Scholar 

  • Lai Y, Chen C, Kuo C (2009) Exercise and type 2 diabetes. Adaptive Med 1:1–16

    CAS  Google Scholar 

  • Lane MA, Ingram DK, Ball SS, Roth GS (1997) Dehydroepiandrosterone sulfate: a biomarker of primate aging slowed by calorie restriction. J Clin Endocrinol Metab 82:2093–2096

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Chen S, Wu M, Hou C, Lai Y, Laio Y, Lin C, Kuo C (2006) The role of dehydroepiandrosterone levels on physiologic acclimatization to chronic mountaineering activity. High Alt Med Biol 7:228–236

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Kuo C, Wang P (2009) Exercise and testosterone. Adaptive Med 1:24–29

    Google Scholar 

  • Luppa P, Munker R, Nagel D, Weber M, Engelhardt D (1991) Serum androgens in intensive-care patients: correlations with clinical findings. Clin Endocrinol (Oxf) 34:305–310

    Article  CAS  Google Scholar 

  • MacIntyre D, Reid W, McKenzie D (1995) Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Med 20:24–40

    Article  PubMed  CAS  Google Scholar 

  • Miller W, Sherman W, Ivy J (1984) Effect of strength training on glucose tolerance and post-glucose insulin response. Med Sci Sports Exerc 16:539–543

    PubMed  CAS  Google Scholar 

  • Morales A, Nolan J, Nelson J, Yen S (1994) Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age [published erratum appears in J Clin Endocrinol Metab 1995;80(9):2799]. J Clin Endocrinol Metab 78:1360–1367

    Article  PubMed  CAS  Google Scholar 

  • Morgan C, Wang S, Mason J, Southwick S, Fox P, Hazlett G, Charney D, Greenfield G (2000) Hormone profiles in humans experiencing military survival training. Biol Psychiatry 47:891–901

    Article  PubMed  CAS  Google Scholar 

  • Olech E, Merrill JT (2005) DHEA supplementation: the claims in perspective. Cleve Clin J Med 72:965–966

    Article  PubMed  Google Scholar 

  • Proske U (2005) Muscle tenderness from exercise: mechanisms? J Physiol 564:1

    Article  PubMed  CAS  Google Scholar 

  • Roth GS, Lane MA, Ingram DK, Mattison JA, Elahi D, Tobin JD, Muller D, Metter EJ (2002) Biomarkers of caloric restriction may predict longevity in humans. Science 297:811

    Article  PubMed  CAS  Google Scholar 

  • Schafers M, Sorkin L, Sommer C (2003) Intramuscular injection of tumor necrosis factor-alpha induces muscle hyperalgesia in rats. Pain 104:579–588

    Article  PubMed  CAS  Google Scholar 

  • Straub RH, Konecna L, Hrach S, Rothe G, Kreutz M, Scholmerich J, Falk W, Lang B (1998) Serum dehydroepiandrosterone (DHEA) and DHEA sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J Clin Endocrinol Metab 83:2012–2017

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Wright LS, Marwah P, Lardy HA, Svendsen CN (2004) Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proc Natl Acad Sci USA 101:3202–3207

    Article  PubMed  CAS  Google Scholar 

  • Thompson D, Nicholas C, Williams C (1999) Muscular soreness following prolonged intermittent high-intensity shuttle running. J Sports Sci 17:387–395

    Article  PubMed  CAS  Google Scholar 

  • Tsai Y, Chou S, Lin Y, Hou C, Hung K, Kung H, Lin T, Chen S, Lin C, Kuo C (2006) Effect of resistance exercise on dehydroepiandrosterone sulfate concentrations during a 72-h recovery: relation to glucose tolerance and insulin response. Life Sci 79:1281–1286

    Article  PubMed  CAS  Google Scholar 

  • Twist C, Eston R (2005) The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur J Appl Physiol 94:652–658

    Article  PubMed  Google Scholar 

  • Vasankari TJ, Kujala UM, Heinonen OJ, Huhtaniemi IT (1993) Effects of endurance training on hormonal responses to prolonged physical exercise in males. Acta Endocrinol 129:109–113

    PubMed  CAS  Google Scholar 

  • Wang J, Chen S, Lee S, Lee S, Huang C, Hsieh C, Kuo C (2009) Dehydroepiandrosterone sulfate linked to physiologic response against hot spring immersion. Steroids 74:945–949

    Article  PubMed  CAS  Google Scholar 

  • Williams MRI, Dawood T, Ling S, Dai A, Lew R, Myles K, Funder JW, Sudhir K, Komesaroff PA (2004) Dehydroepiandrosterone increases endothelial cell proliferation in vitro and improves endothelial function in vivo by mechanisms independent of androgen and estrogen receptors. J Clin Endocrinol Metab 89:4708–4715

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Chen C, Liao Y, Lin F, Lee W, Cho Y, Chen M, Chous C, Kuo C (2005) Interactive effect of an acute bout of resistance exercise and dehydroepiandrosterone administration on glucose tolerance and serum lipids in middle-aged women. Chin J Physiol 48:23–29

    PubMed  CAS  Google Scholar 

  • Zeviani M (2008) Train, train, train! No pain, just gain. Brain 131:2809–2811

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported in part by Taiwan Department of Health Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004). We appreciated all the subjects participating in this study.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hua Kuo.

Additional information

Communicated by William J. Kraemer.

S.-D. Lee and C.-H. Kuo are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, YH., Liao, KF., Kao, CL. et al. Effect of dehydroepiandrosterone administration on recovery from mix-type exercise training-induced muscle damage. Eur J Appl Physiol 113, 99–107 (2013). https://doi.org/10.1007/s00421-012-2409-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2409-6

Keywords

Navigation