Skip to main content
Log in

Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: evidence of prolonged nitrogen narcosis?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

One of the possible risks incurred while diving is inert gas narcosis (IGN), yet its mechanism of action remains a matter of controversy. Although providing insights in the basic mechanisms of IGN, research has been primarily limited to animal studies. A human study, in real diving conditions, was needed. Twenty volunteers within strict biometrical criteria (male, age 30–40 years, BMI 20–23, non smoker) were selected. They performed a no-decompression dive to a depth of 33 mfw for 20 min and were assessed by the means of critical flicker fusion frequency (CFFF) measurement before the dive, during the dive upon arriving at the bottom, 5 min before the ascent, and 30 min after surfacing. After this late measurement, divers breathed oxygen for 15 min and were assessed a final time. Compared to the pre-dive value the mean value of each measurement was significantly different (p < 0.001). An increase of CFFF to 104 ± 5.1 % upon arriving to the bottom is followed by a decrease to 93.5 ± 4.3 %. This impairment of CFFF persisted 30 min after surfacing, still decreased to 96.3 ± 8.2 % compared to pre-dive CFFF. Post-dive measures made after 15 min of oxygen were not different from control (without nitrogen supersaturation), 124.4 ± 10.8 versus 124.2 ± 3.9 %. This simple study suggests that IGN (at least partially) depends on gas-protein interactions and that the cerebral impairment persists for at least 30 min after surfacing. This could be an important consideration in situations where precise and accurate judgment or actions are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraini JH, Kriem B, Balon N, Rostain JC, Risso JJ (2003) Gamma-aminobutyric acid neuropharmacological investigations on narcosis produced by nitrogen, argon, or nitrous oxide. Anesth Analg 96:746–749 (Table of contents)

    Article  PubMed  CAS  Google Scholar 

  • Ali MR, Khaleque A, Khanam M, al-Shatti A, Ahmed RU et al (1994) Critical flicker frequency of mentally retarded and normal persons. Percept Mot Skills 79:1235–1238

    Article  PubMed  CAS  Google Scholar 

  • Balon N, Kriem B, Weiss M, Rostain JC (2002) GABA(A) receptors in the pars compacta and GABA(B) receptors in the pars reticulata of rat substantia nigra modulate the striatal dopamine release. Neurochem Res 27:373–379

    Article  PubMed  CAS  Google Scholar 

  • Banister EW, Singh AK (1981) The central role of Acmonia in OHD-inducted Convulsions. In: Bachrach AJ, Matzen MM (eds) Underwater physiology VII. Undersea Med Soc Inc, Bethesda, pp 37–44

    Google Scholar 

  • Behnke AR, Thomson RM, Motley EP (1935) The physiologic effects from breathing air at 4 atmospheres pressure. Am J Physiol 112:554–558

    Google Scholar 

  • Bennett PB (2004) Inert gas narcosis and high-pressure nervous syndrome In: Bove AA (ed) Bove and Davis’ diving medicine (4th edn). Saunders, Philadelphia, pp 225–240

  • Brerro-Saby C, Delliaux S, Steinberg JG, Jammes Y (2010) The changes in neuromuscular excitability with normobaric hyperoxia in humans. Exp Physiol 95:153–159

    Article  PubMed  Google Scholar 

  • Chang TT, Ciuffreda KJ, Kapoor N (2007) Critical flicker frequency and related symptoms in mild traumatic brain injury. Brain Inj 21:1055–1062

    Article  PubMed  Google Scholar 

  • David HN, Balon N, Rostain JC, Abraini JH (2001) Nitrogen at raised pressure interacts with the GABA(A) receptor to produce its narcotic pharmacological effect in the rat. Anesthesiology 95:921–927

    Article  PubMed  CAS  Google Scholar 

  • Davranche K, Pichon A (2005) Critical flicker frequency threshold increment after an exhausting exercice. J Sport Exerc Psychol 27:515–520

    Google Scholar 

  • Dean JB, Mulkey DK, Garcia AJ 3rd, Putnam RW, Henderson RA 3rd (2003) Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. J Appl Physiol 95:883–909

    PubMed  CAS  Google Scholar 

  • Dedieu D, Balon N, Weiss M, Risso JJ, Kinkead R, Rostain JC (2004) Microdialysis study of striatal dopaminergic dysfunctions induced by 3 MPa of nitrogen– and helium–oxygen breathing mixtures in freely moving rats. Brain Res 998:202–207

    Article  PubMed  CAS  Google Scholar 

  • Demchenko IT, Piantadosi CA (2006) Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures. Undersea Hyperb Med 33:169–174

    PubMed  CAS  Google Scholar 

  • Feshchenko VA, Reinsel RA, Veselis RA (1994) Optimized method of estimation of critical flicker frequency (CFF). Proc Annu Symp Comput Appl Med Care 1006

  • Ginsburg N, Jurenovskis M, Jamieson J (1982) Sex differences in critical flicker frequency. Percept Mot Skills 54:1079–1082

    Article  PubMed  CAS  Google Scholar 

  • Hindmarch I (1982) Critical flicker fusion frequency (CFF): the effects of psychotropic compounds. Pharmacopsychiatry 15(44):48

    Google Scholar 

  • Hou RH, Langley RW, Szabadi E, Bradshaw CM (2007) Comparison of diphenhydramine and modafinil on arousal and autonomic functions in healthy volunteers. J Psychopharmacol 21:567–578

    Article  PubMed  CAS  Google Scholar 

  • Hunter KM, Zacharias M, Parkinson R, Luyk NH (1994) Effect of flumazenil on the recovery from intravenous midazolam. N Z Dent J 90:9–12

    PubMed  CAS  Google Scholar 

  • Jibu M (2001) Theory of cell membrane organizers and pressure reversal of anesthesia. Med Hypotheses 56:26–32

    Article  PubMed  CAS  Google Scholar 

  • Kircheis G, Wettstein M, Timmermann L, Schnitzler A, Haussinger D (2002) Critical flicker frequency for quantification of low-grade hepatic encephalopathy. Hepatology 35:357–366

    Article  PubMed  Google Scholar 

  • Kovachich GB, Mishra OP, Clark JM (1981) Depression of cortical Na+, K+-ATPase activity in rats exposed to hyperbaric oxygen. Brain Res 206:229–232

    Article  PubMed  CAS  Google Scholar 

  • Lafère P, Balestra C, Hemelryck W, Donda N, Sakr A, Taher A, Marroni S, Germonpre P (2010) Evaluation of critical flicker fusion frequency and perceived fatigue in divers after air and enriched air nitrox diving. Diving Hyperbaric Med 40:114–118

    Google Scholar 

  • Lauridsen MM, Jepsen P, Vilstrup H (2011) Critical flicker frequency and continuous reaction times for the diagnosis of minimal hepatic encephalopathy: a comparative study of 154 patients with liver disease. Metab Brain Dis 26(2):135–139

    Google Scholar 

  • Lavoute C, Weiss M, Rostain JC (2008) Alterations in nigral NMDA and GABAA receptor control of the striatal dopamine level after repetitive exposures to nitrogen narcosis. Exp Neurol 212:63–70

    Article  PubMed  CAS  Google Scholar 

  • Leigh G (1982) The combined effects of alcohol consumption and cigarette smoking on critical flicker frequency. Addict Behav 7:251–259

    Article  PubMed  CAS  Google Scholar 

  • Liu YC, Ho CH (2010) Effects of different blood alcohol concentrations and post-alcohol impairment on driving behavior and task performance. Traffic Inj Prev 11:334–341

    Article  PubMed  Google Scholar 

  • Lowry C (2005) Inert gas narcosis. In: Edmons C, Lowry C, Pennefather J, Walker R (eds) Diving and Subaquatic Medicine, 4th edn. Hodder Arnold, London, pp 183–193

    Google Scholar 

  • Luczak A, Sobolewski A (2000) The relationship between critical flicker fusion frequency (CFFF) and temperamental characteristics. Int J Occup Saf Ergon 6:493–505

    PubMed  CAS  Google Scholar 

  • Luczak A, Sobolewski A (2005) Longitudinal changes in critical flicker fusion frequency: an indicator of human workload. Ergonomics 48:1770–1792

    Article  PubMed  Google Scholar 

  • Luczak A, Kurkus-Rozowska B, Sobolewski A (1995) Flicker test as a load measurement during the combined effect of heat and noise. Int J Occup Saf Ergon 1:160–166

    PubMed  Google Scholar 

  • Matalon S, Hardiman KM, Jain L, Eaton DC, Kotlikoff M, Eu JP, Sun J, Meissner G, Stamler JS (2003) Regulation of ion channel structure and function by reactive oxygen-nitrogen species. Am J Physiol Lung Cell Mol Physiol 285:L1184–L1189

    PubMed  CAS  Google Scholar 

  • NAVSEA (2008) The air decompression table. In: NAVSEA (ed) US Navy Diving Manual (Revision 6): SS521-AG-PRO-010/0910-LP-106-0957. US Navy

  • Pastena L, Faralli F, Mainardi G, Gagliardi R (2005) EEG patterns associated with nitrogen narcosis (breathing air at 9 ATA). Aviat Space Environ Med 76:1031–1036

    PubMed  Google Scholar 

  • Radomski MW, Watson WJ (1973) Effect of lithium on acute oxygen toxicity and associated changes in brain gamma-aminobutyric acid. Aerosp Med 44:387–392

    PubMed  CAS  Google Scholar 

  • Railton RC, Foster TM, Temple W (2009) A comparison of two methods for assessing critical flicker fusion frequency in hens. Behav Processes 80:196–200

    Article  PubMed  Google Scholar 

  • Richardson D, Kinsella D, Schreeves K (2005) Gas Narcosis. In: Richardson D, Kinsella D, Schreeves K (eds) The encyclopedia of recreational diving. PADI, Rancho Santa Margarita, pp 20–23

  • Rostain JC, Lavoute C, Risso JJ, Vallee N, Weiss M (2011) A review of recent neurochemical data on inert gas narcosis. Undersea Hyperb Med 38:49–59

    PubMed  CAS  Google Scholar 

  • Rota-Baterlink RA (1999) The diagnostic value of automated threshold perimetry. Cur Opin Ophtalmol 10:135–139

    Article  Google Scholar 

  • Salib Y, Plourde G, Alloul K, Provost A, Moore A (1992) Measuring recovery from general anaesthesia using critical flicker frequency: a comparison of two methods. Can J Anaesth 39:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Schillaci C, Fazio O (1967) Critical fusion frequency. (Its changes after ingestion of alcohol). Boll Ocul 46:772–782

    PubMed  CAS  Google Scholar 

  • Schwartz-Bloom RD, Sah R (2001) Gamma-aminobutyric acid(A) neurotransmission and cerebral ischemia. J Neurochem 77:353–371

    Article  PubMed  CAS  Google Scholar 

  • Seki K, Hugon M (1976) Critical flicker frequency (CFF) and subjective fatigue during an oxyhelium saturation dive at 62 ATA. Undersea Biomed Res 3:235–247

    PubMed  CAS  Google Scholar 

  • Sharma P, Singh S, Sharma BC, Kumar M, Garg H, Kumar A, Sarin SK (2011) Propofol sedation during endoscopy in patients with cirrhosis, and utility of psychometric tests and critical flicker frequency in assessment of recovery from sedation. Endoscopy 43:400–405

    Article  PubMed  CAS  Google Scholar 

  • Truszczynski O, Wojtkowiak M, Biernacki M, Kowalczuk K (2009) The effect of hypoxia on the critical flicker fusion threshold in pilots. Int J Occup Med Environ Health 22:13–18

    Article  PubMed  Google Scholar 

  • Tytla ME, Trope GE, Buncic JR (1990) Flicker sensitivity in treated ocular hypertension. Ophthalmology 97:36–43

    PubMed  CAS  Google Scholar 

  • Vallee N, Rostain JC, Risso JJ (2009) How can an inert gas counterbalance a NMDA-induced glutamate release? J Appl Physiol 107:1951–1958

    Article  PubMed  CAS  Google Scholar 

  • Vallee N, Rostain JC, Risso JJ (2010) A pressurized nitrogen counterbalance to cortical glutamatergic pathway stimulation. Neurochem Res 35:718–726

    Article  PubMed  CAS  Google Scholar 

  • Wernberg M, Nielsen SF, Hommelgaard P (1980) A comparison between reaction time measurement and critical flicker fusion frequency under rising nitrous oxide inhalation in healthy subjects. Acta Anaesthesiol Scand 24:86–89

    Article  PubMed  CAS  Google Scholar 

  • Wlodarczyk A, McMillan PF, Greenfield SA (2006) High pressure effects in anaesthesia and narcosis. Chem Soc Rev 35:890–898

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Su Y, Oury TD, Piantadosi CA (1993) Cerebral amino acid, norepinephrine and nitric oxide metabolism in CNS oxygen toxicity. Brain Res 606:56–62

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lafère.

Additional information

Communicated by Dag Linnarsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balestra, C., Lafère, P. & Germonpré, P. Persistence of critical flicker fusion frequency impairment after a 33 mfw SCUBA dive: evidence of prolonged nitrogen narcosis?. Eur J Appl Physiol 112, 4063–4068 (2012). https://doi.org/10.1007/s00421-012-2391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2391-z

Keywords

Navigation